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Uninformed/Blind Search

The first topic of this course is search. Search algorithms are used to solve certain types of optimization
problems. We all encounter optimization problems every day. For example, the first day of class, you
probably searched for the best path from your dorm to this classroom. This problem of finding is the best
path from your dorm to this classroom is an optimization problem.

Examples of optimization problems include:

• path planning: given a graph where vertices are locations and edges are distances between them, find
a shortest path from a start/source node to a goal/destination node

• game playing: given the rules of game (e.g., chess), find an optimal policy, meaning an optimal mapping
from states to moves

• job scheduling: given a set of machines with varying processing power, and a set of jobs to be run on
those machines of varying processing times, schedule the jobs so that the total time to completion is
minimized

• theorem proving: given a set of axioms, some rules of inference, and a select formula, find a proof of
the formula, if one exists

In this course, we will study the following classes of search algorithms

1. uninformed or blind search: depth-first search (DFS), breadth-first search (BFS), and iterative
deepening search (IDS)

2. heuristic search: in which search is guided by a heuristic evaluation function: A∗ and IDA∗

3. adversarial search: for playing games with mutliple players: minimax and αβ pruning

4. local search: (stochastic) gradient descent, or hill climbing, and simulated annealing

We will cover these algorithms in turn during the next few lectures.

1 Shakey the Robot

Shakey the robot was one of the earliest robots able to perceive, reason, and act in its environment. Shakey
was built to autonomously navigate in its surroundings. Specifically, it was initialized in some start state,
and then asked to find its way to a goal state, circumventing any obstacles encountered along the way. Fast
forward 75 years. Today’s self-driving cars are intended to do much of the same. 2 Like Shakey and self-
driving cars, navigation is a problem that you experience daily, when going from one class to another, or from

1Notes prepared by Prof. Eric Ewing and Prof. Amy Greenwald
2One big difference between Shakey and today’s self-driving cars is that the obstacles in Shakey’s environment were static,

whereas self-driving cars must circumvent moving obstacles with “minds of their own.”
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Figure 1: Shakey the Robot. Image courtesy of Wikipedia.

your dorm room to the dining hall. It is important to recognize that these tasks (i.e., Shakey Navigation,
self-driving car planning, and finding the best path your classroom) are essentially the same problem.

In this case, you probably easily recognized these examples were the same problem. We can abstract away
some of the specifics of the examples. It does not matter whether the embodied agent is Shakey, a car, or a
human. It does not matter whether the agent is navigating indoors, on roads, or on sidewalks. At the most
abstract level, each of these problems contains the same components: An environment, A starting location,
a goal location, and rules for how an agent can move through the environment. For each example, if we can
specify these four components precisely and develop an algorithm that works on this abstract formulation,
then we can use that same algorithm in all three examples!

One of the central themes of this course is problem formulation. More often than not, the challenge of
solving a problem lies in formulating it. If you can formalize a problem as an instance of a problem for which
solutions are known (e.g., a search problem), then solving it becomes as simple as applying those algorithms
(e.g., BFS or DFS).

2 Basic Search Problem

The first class of problems we encounter in this course are basic search problems. A basic search problem is
a 4-tuple ⟨X,S,G, T ⟩, where

• X is a set of states

• S ⊆ X is a nonempty set of start states

• G ⊆ X is a nonempty set of goal states

• T : X ⇒ X is a state transition model, mapping a state x ∈ X to a set T (x) of successor states

It may, at times, be appropriate to formulate the search problem with a Goal Test function rather than a
set of states G. Let G : X → {0, 1} be a goal test function, where G(x) = 1 ⇔ x ∈ G.
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Navigation as Search Given this general problem definition, we can formulate the problem of navigating
around Brown’s campus as follows:

• X: the set of all intersections on a campus map

• S: the origin of your journey

• G: your desired destination

• T : a mapping from a state to all states “reachable” from that state (e.g., intersections one block away,
accounting for dead ends and one-way roads).

The solution to a basic search problem is a path P = {x1, . . . , xk}, meaning a sequence of states, beginning
at some start state x1 ∈ S and ending at some goal state xk ∈ G, with xi+1 ∈ T (xi) for all i ∈ {2, . . . , k−1}.
(N.B., sometimes we are only interested in the goal state, and not the path to the goal state.)

Note that there may be many solutions to a basic search problem: i.e., many paths from a start state to a
goal. For example, there are multiple routes from your dorm room to this classroom. Often, we are interested
in optimal solutions. An optimal solution to a basic search problem is a shortest path, meaning one that
traverses the fewest number of states en route from the start state to a goal. In the context of navigation,
our goal is to find a path our agent can travel to reach their goal location and the optimal path is the shortest
path.

We now turn our attention to a very different example and show that it is, in some sense, equivalent to
our navigation problems. That is, by formalizing the problem in the language of a Basic Search Problem,
we show that any algorithm that can solve search problems is actually much more powerful than initially
suspected.

Knuth’s Conjecture In 1964, Donald Knuth conjectured that, starting from the number 4, you can reach
any positive integer by applying a sequence of factorial, square root, and floor operators [1].

Here’s one way to reach 5:

⌊(

√√√√√
√√√√√√√√

(4!)!)⌋ = 5

How would you formulate Knuth’s Conjecture as search?

• X: the set of positive numbers (R+)

• S: 4

• G: {5, 6, 7, . . .}, whatever integer is provided for the start number.

• T : T (x) → {x!,
√
x, ⌊x⌋}

N.B. Without proof to the contrary, it seems safe to assume the state space in this search problem is infinite.

Assumptions In these notes, we restrict our attention to search problems on locally finite graphs. In
locally finite graphs, the degree of every vertex is finite (i.e., no vertex has an infinite number of neighbors).

That said, X itself need not be finite. X may be infinite, and even when X is finite, there may be search
paths of infinite length. (Imagine Shakey can move north, south, east, and west. Moving east and then west
and then east again and so on would constitute an infinite path, even in a finite state space.)
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Since X can, in general, be very large—consider, for example, searching for an optimal policy in the game
of chess—we usually cannot store all of X in memory. On the contrary, we conduct search by visiting states
one-by-one, and keeping track of the set of states we are currently searching (the open set; also called the
fringe), and, when memory constraints allow, which states we have already searched (the closed set).

3 Generic Search Algorithm

The blind search algorithms we discuss in this lecture are all instantiations of the following generic search
algorithm. This algorithm maintains an open set of states, initialized to the set of start states, which it
considers in turn as potential goal states. For each such state, it either deems it a goal and returns, or it
discards it and inserts its successors into the open set to also be considered in turn as potential goal states.

When a state is deleted from the open set and tested to see if it is a goal or not, we say that state has been
visited. When a state’s successors are added to the open set, we say that state has been expanded.

Search
Inputs search problem ⟨X,S,G, T ⟩
Output (path to) goal node
Initialize O = S is the list of open nodes

while (O is not empty) do

1. delete some node n ∈ O

2. if n ∈ G, return (path to) n

3. insert T (n) to O

fail

Table 1: Generic Search Algorithm.

This algorithm is designed for trees, not graphs. It does not maintain a closed set, because there is exactly
one path to every node in a tree.

Exercise Modify this algorithm so that it searches graphs, not just trees, by keeping track of a closed set as
well as an open one, and being sure not to revisit already visited states. You can assume there is sufficient
memory in which to store all visited states, and sufficient time to test membership in this set.

4 Evaluation Criteria

The following criteria are used to evaluate search algorithms:

• time complexity: how much time is required to find solution?

• space complexity: how much space is required to find solution?

• completeness: is the algorithm guaranteed to find solution, if one exists?

• optimality: does it find an optimal solution?
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The analyses and algorithms presented in this lecture depend on the assumption that the search space is
a tree of (possibly infinite) depth d with finite branching factor b. The depth of a tree is defined as the
maximum number of hops from the root node to any other node in the tree. The branching factor of a tree
is defined as the maximum number of children of any node in the tree.

5 Breadth-First Search

The main idea of breadth-first search (BFS) is to visit all the states at depth i before visiting those at depth
i+ 1. BFS is implemented by storing the open set as a queue, and accessing its entries in a first-in-first-out
(FIFO) fashion.

BFS
Inputs search problem ⟨X,S,G, T ⟩
Output (path to) goal node
Initialize O = S is the list of open nodes

while (O is not empty) do

1. delete first node n ∈ O

2. if n ∈ G, return (path to) n

3. append T (n) to back of O

fail

Table 2: Breadth-First Search.

BFS is complete: it is guaranteed to find a solution, if one exists. Moreover, BFS is optimal: it always finds
a goal state of minimal distance from the start state.

In the worst case, BFS expands every node, which takes time as follows:

1 + b+ b2 + . . .+ bd =

d∑
i=0

bi =
bd+1 − 1

b− 1
= O(bd)

In terms of space, BFS maintains a queue of potentially all the states at each depth: at depth d the length
of this queue is bd. The space complexity of BFS is thus exponential in d.

6 Depth-First Search

The main idea of depth-first search (DFS) is to always visit a state in the open set of maximal depth,
among all open states. DFS is implemented by storing the open set as a stack , and accessing its entries in
a last-in-first-out fashion (LIFO).

Like BFS, the time complexity of DFS is O(bd). It is exponential in d because DFS searches the entire tree
in the worst case. The space complexity of DFS, however, is linear in d: at most b nodes are stored at each
of the d depths: i.e., DFS is O(bd).

DFS is neither complete nor optimal. What if we were to try using DFS to solve Knuth’s conjecture, and
it applied the factorial operation repeatedly? The state would only ever increase and we’d never reach our
goal! (Incomplete)
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DFS(X,S,G, T )
Inputs search problem
Output (path to) goal node
Initialize O = S is the list of open nodes

while (O is not empty) do

1. delete first node n ∈ O

2. if n ∈ G, return (path to) n

3. prepend T (n) to front of O

fail

Table 3: Depth-First Search.

What about a robot who is planning a path to move 1 meter to the east? If DFS started searching west
first, the would robot travel all the way around the world before reaching its goal! (Suboptimal)

7 Iterative Deepening

Iterative deepening (ID) is an optimal search algorithm with the space requirements of DFS—it requires
memory linear in d—and the performance properties of BFS—it is complete and optimal. The main idea of
iterative deepening is to repeatedly search in depth-first fashion, over subgraphs of depth 0, depth 1, depth
2, and so on, until a goal is found.

ID(X,S,G, T )
Inputs search problem
Output (path to) goal node
Initialize c = 0 is the cutoff depth

O = S is the list of open nodes

while goal not found do

1. while (O is not empty) do

(a) delete first node n ∈ O

(b) if n ∈ G, return (path to) goal n

(c) if depth(n) ≤ c

i. prepend T (n) to front of O

2. increment c, O = S

Table 4: Iterative Deepening.

ID is optimal and complete: it is guaranteed to find a goal if one exists, and an optimal goal when there are
multiple solutions.

Like DFS and BFS, the time complexity of ID is O(bd): in the worst case it is exponential in d. ID expands
nodes at depth 0 d+ 1 times, at depth 1 d times, . . . , and at depth d 1 time. Thus, the total time required
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is given by:

1 + 1 + b︸ ︷︷ ︸
d = 1

+1 + b+ b2︸ ︷︷ ︸
depth 2

+ . . .+ 1 + b+ b2 + . . .+ bd︸ ︷︷ ︸
depth d

=

d∑
c=0

c∑
i=0

bi =

d∑
c=0

bc+1 − 1

b− 1
= O(bd)

Finally, ID iteratively performs depth-first searches; thus, its space complexity is that of DFS, namely O(bd).

8 Summary

Criteria DFS BFS ID
Time O(bd) O(bd) O(bd)
Space O(bd) O(bd) O(bd)
Completeness NO YES YES
Optimality NO YES YES

1. BFS is preferred when the branching factor is small

2. ID is preferred when the depth is large: the search space is deep (possibly infinite), particularly if goals
are known to be shallow

3. DFS is preferred when the maximum depth of the goal nodes is known: if this depth is n, modify DFS
to search only to depth n
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