
Foundations of AI Spring 2026

Professor Serena Booth1 Search Unit

Adversarial Search

1 History of Games in AI

For a brief history of game playing in AI, we refer you to this AAAI 2020 panel, moderated by Professor
Greenwald. Panelists include AI luminaries Murray Campbell (Chief architect of Deep Blue), Mike Bowling
(Leader of the Computer Poker Research Group at Alberta), and David Silver (creator of AlphaGo), as well
as Chess Grandmaster Garry Kasparov.

2 Two-Player Zero-Sum Games

A game is a very general model of agent interactions. One class of games that has been a very common object
of study among AI practitioners is two-player, alternating-move, zero-sum games, such as Tic-Tac-Toe, Chess,
and Poker. Among these examples, Tic-Tac-Toe are Chess are perfect-information games, while Poker—a
card game—is a game of imperfect information, because some of the players’ cards are hidden. Moreover,
while Tic-Tac-Toe and Chess are deterministic, as is Poker once the cards are dealt, in Backgammon, there
is stochasticity throughout, because every move depends on the roll of the dice.

Alternating-move games of perfect information can be represented as tuples Γ = ⟨P,X, S, T, T , l,v⟩, where

• P is a set of n players2

• X is a finite set of states

• S ⊆ X is a nonempty set of start states

• T ⊆ X is a nonempty set of terminal states

• T : X ⇒ X is a state transition function
T (x) is the set of successor states of x

• l : X → P labels state x with the player who moves at x

• v : T → [−1, 1]n maps terminal states into real-valued vectors
vi(x) ∈ [−1, 1] is the payoff to player i at state x

Zero-sum games are so-called because
∑n

i=1 vi(x) = 0, for all x ∈ T . In two-player, zero-sum games the two
players are viewed as adversaries; one player is the maximizer (Max); the other is the minimizer (Min),
i.e., vMAX(x) = −vMIN(x). In such games, it suffices to use one value v to represent the value of a state: if
v(x) > 0 (v(x) < 0), then Max (Min) is the winner; if v(x) = 0, then the game is a draw.

As an example, consider the game of m, p-NIM. Initially, there are p piles of m matches. To move, a player
removes any number of matches from exactly one pile. The losing (or winning) player is s/he who removes

1Notes prepared by Prof. Eric Ewing and Prof. Amy Greenwald
2In this formalism, stochasticity can be modeled as a chance player, whose moves depend on the outcome of randomness.

1

https://vimeo.com/389556398
https://en.wikipedia.org/wiki/Murray_Campbell
https://en.wikipedia.org/wiki/Deep_blue_(chess_computer)
https://www.amii.ca/about/our-people/michael-bowling/
https://en.wikipedia.org/wiki/David_Silver_(computer_scientist)
https://deepmind.google/technologies/alphago/
https://en.wikipedia.org/wiki/Garry_Kasparov


2,2

2,1

2,0

1,0

0,0

+1

0,0

−1

0,1

0,0

−1

1,1

1,0

0,0

+1

2,0

1,0

0,0

−1

0,0

+1

Figure 1: Game tree for 2,2-Nim. Max nodes are upright triangles; Min nodes are upside-down triangles.
The minimax value of this game is −1: there is a winning strategy for Min.

the final match. The game tree representation of 2,2-NIM (for two players) is depicted in Figure 1, where it
is modeled as follows:

• P = {Max,Min}

• X = Y × P : e.g., ((1, 1),Max) ∈ X
Y = {(2, 2), (2, 1), (2, 0), (1, 1), (1, 0), (0, 0)}
canonical representation where a ≥ b for all pairs (a, b)

• S = {((2, 2),Max), ((2, 2),Min)}

• T = {((0, 0),Max), ((0, 0),Min)}

• T ((2, 2),Max) = {((2, 1),Min), ((2, 0),Min)},
T ((2, 1),Min) = {((1, 1),Max), ((1, 0),Max), ((2, 0),Max)}, . . .

• l((2, 2),Max) = Max,
l((2, 1),Min) = Min,
l((2, 0),Min) = Min, . . .

• v((0, 0),Max) = (+1,−1),
v((0, 0),Min) = (−1,+1)

3 Minimax Search

To solve a game is to predict its outcome. That is, to predict how the game will be played. To predict how
a game will be played, it is necessary to make some assumptions about the players’—or agents’—behavior.

2



The most common assumption is to assume all agents behave rationally. Rationality in the context of
games (including non-zero sum games) means acting so as to maximize utility, where utility is a measure
of an agent’s satisfaction with an outcome. In zero-sum games, specifically, a rational (Max) agent acts to
maximize the value of the game, while a rational (Min) agent acts to minimize the value of the game.

Perhaps one of the longest-standing open questions in game theory is whether white (or black) has a winning
strategy in Chess. That is, can either agent force a win, meaning no matter how black (resp. white) plays,
can white (resp. black) guarantee a win? We cannot (yet) answer this question for Chess, but Zermelo’s
theorem [2] tells us that one of the following three statements must be true: either white has a winning
strategy, or black has a winning strategy, or optimal play for both results in a draw.

The proof of Zermelo’s theorem is by backward induction [1], and applies to all finite two-player,
alternating-moves, zero-sum games of perfect information. A game’s value at each leaf node is dictated
by the rules of the game. It is therefore conceptually simple to solve games of depth 1: it suffices to look
at all the successors and choose one that is utility maximizing: i.e., one that yields a value of +1 when it is
Max’s turn to move, and −1 when it is Min’s turn. But now that we know the value of a game of depth 1,
we can apply the same procedure to compute the value of a game of depth 2. And so on.

In this way, a (finite) game’s value can be computed by backing up values from the leaf nodes to the root.
Hence, the name “backward” induction. The ensuing value is called the minimax value of the game. If
the minimax value of a game is +1, then there exists a winning strategy for Max; if the minimax value is
−1, then there exists a winning strategy for Min; if the value of the root node is 0, then neither player has
a winning strategy, and optimal play results in a draw.

The definition of the minimax value of a game suggests a breadth-first-search style computation, as each
interior node’s value is the maximum or the minimum of its childrens’ values. In practice, however, the
minimax algorithm usually traverses nodes in depth-first-search (DFS) order to ensure that space is managed
efficiently. We present a recursive version of minimax, which naturally traverses nodes in DFS order.

Like any recursive algorithm, the minimax algorithm computes the values of smaller and smaller problem
instances before backing up any values. Hence, we use the following notation in our pseudocode (see Table 1):
given game Γ, we let Γz denote the subgame Γ rooted at node z.

In the base case, i.e., at the terminal nodes, values are determined by the game. In the inductive step, two
cases arise: The value at a Max node y is initialized to −∞, and then minimax is called on Γy. Similarly,
the value at a Min node z is initialized to +∞, and then minimax is called on Γy. When these recursive
calls return, the values returned are “maxed” or “minned” as appropriate with the current value of x.

The pseudocode presented in Table 1 returns the minimax value of the game, but it does not return a
minimax strategy. Formally, a strategy in a game, often called a policy, is a function from states to actions.
It is straightforward to generalize our pseudocode to return an action that produces the minimax value of a
node, rather than just the minimax value itself. An optimal policy comprises such actions.

4 Depth-Limited Search

Although a minimax solution always exists, it is intractable to compute one in most interesting games.3

Instead, in most implementations of adversarial search, search proceeds to some limited depth or for some
limited time, at which point expansion of the search tree is truncated, and an evaluation function is employed
to estimate the minimax value. Thus, as in informed search, the name of the game (no pun intended!) is to
encode domain knowledge into a heuristic to guide the search.

3Indeed, games like tic-tac-toe for which computing the minimax solution is tractable could be said to be uninteresting
for precisely that reason!

3



MinimaxValue
Inputs game tree Γx rooted at x
Output minimax value

1. if x ∈ T , return v

2. if l(x) = Max, return MaxValue(Γx)

3. if l(x) = Min, return MinValue(Γx)

MaxValue
Inputs game tree Γx rooted at x
Output minimax value

1. v = −∞

2. for all y ∈ T (x)

(a) v = max{v,MinimaxValue(Γy)}

3. return v

MinValue
Inputs game tree Γx rooted at x
Output minimax value

1. v = +∞

2. for all y ∈ T (x)

(a) v = min{v,MinimaxValue(Γy)}

3. return v

Table 1: Algorithm for computing the minimax value of a game.

An evaluation function for a game is a function from game states to values. For example, to evaluate a
state in Tic-Tac-Toe from the point of view of, say, X, you might ask how many opportunities there are for
X to complete a line from that state. From the initial state (an empty board), X can move to a state with
an X in a corner, along a side, or in the middle (see Figure 2). A corner state presents the opportunity to
complete three lines, while a side state offers only two opportunities, and the middle state offers four.

A more general approach to designing evaluation functions is to enumerate the important features of a game
state, and to then score those features individually, before combining them to produce a heuristic value. For
example, in Chess, the features might be how many of each type of piece are on the board: Let qw denote
the no. white queens; rw, the no. white rooks; kw, the no. white knights; sw, the no. white bishops; and pw,
the no. white pawns; and likewise, for Black’s pieces. We can then linearly combine these features, weighting
each by a score that corresponds to its material value. In this way, we can evaluate the quality of a state x
for each of White and Black as follows:

w(x) = 9qw + 5rw + 3kw + 3sw + 1pw

b(x) = 9qb + 5rb + 3kb + 3sb + 1pb

One simple evaluation function is then e(x) = w(x) − b(x).4 A positive value indicates an advantage for

4If desired, these values can be normalized to lie in the range [−1,+1], by dividing w(x) − b(x) by w(x) + b(x), but they
need not be.

4



X

X O X
O

X O X

O

X X

Figure 2: An example initial game tree for Tic-Tac-Toe, showing X’s first move options (corner, side, or
middle) and subsequent possible states.

White; a negative value, an advantage for Black; and zero, no advantage either way.

Exercise What are some limitations of this heuristic evaluation function?

Evaluation functions return heuristic estimates, which are not perfect. As a result, choosing a depth or
time at which to truncate search in game trees is a delicate matter. If e(x) is changing rapidly, then single
moves dramatically affect the (apparent) value of x. One popular heuristic is to allow search to proceed until
quiescence. Another difficulty is that search algorithms cannot recognize drastic changes in the values of
nodes if delay tactics push drastic moves beyond the horizon; this is called the horizon effect. One proposed
solution to this problem is to engage in a secondary search beyond the seemingly best node. This technique
is called singular extension. If it is determined that this path degrades, then a secondary search is performed
on the second-best node; but it is impractical to conduct a secondary search on all nodes.

5 αβ-Pruning

The αβ-pruning algorithm is an alternative to minimax, which also computes the minimax value of a game,
but it scales better, because—as the name suggests—it prunes subtrees once it determines that their values
cannot alter the minimax value computed so far. Pseudocode for a recursive version of αβ-pruning appears
in Table 2. This pseudocode varies only very slightly from the minimax algorithm itself. Thus like minimax,
it is straightforward to implement a depth-limited version of αβ-pruning.

The main idea of αβ pruning can be understood by example. Consider the game tree in Figure 5. Max is
the first to move in this game. Were she to move left, her value would be 1, the minimum of Min’s three
moves at node B, which yield 3, 2, and 1, respectively. Instead, by taking the right branch, and letting Min
evaluate his leftmost branch (node H), Max learns that her value at node C is bounded above by 0. Why?
Because it is Min’s move at node C, and although C’s value may ultimately be less than 0, Min will ensure
that its value is never more than 0. Therefore, since Max can guarantee a value of 1 by moving left, and
cannot earn any more than 0 by moving right, any branches below node C can be pruned—their values have

5



A
α = 1

β = +∞
v = 1

B
α = −∞
β = 1
v = 1

3 2 1

C
α = 1

β = +∞
v = 0

H

v = 0

I

v = +10

J

v = −10

Figure 3: An example of αβpruning. The subtrees rooted at I and J can pruned because their values do
not impact the value of node A. Indeed, the pruning test passes: v = 0 ≤ 1 = α.

no bearing on the minimax value of the game.

The αβ-pruning algorithm is nearly identical to minimax. The only difference is that two additional book-
keeping parameters, unsurprisingly called α and β, are maintained throughout the computation, and applied
for pruning purposes. The former, α, represents the best known value for Max along an alternative path
in the game tree; analogously, the latter, β, represents the best known value for Min along an alternative
path in the game tree. In this way, if ever during normal minimax operations, it is determined that v ≥ β
or v ≤ α, all remaining subtrees of the tree currently being evaluated can be pruned, because it has been
determined that there is a higher (resp. lower) value for Max (resp. Min) along an alternative path.

In our example, the α value at the root is updated to +1 after the value of the left branch (node B) is
determined. Thus, α = +1 when αβpruning is called recursively on the subtree rooted at C. Now, when
0 is returned as the value at node H, and C’s value is updated accordingly, all subtrees beneath C can be
pruned, because the current value at C, namely 0, is less than α, namely +1.

The initial call to αβ-pruning initializes α and β to their lower and upper bounds, respectively, namely,
−1 and +1, as no values anywhere in the game tree have as yet been determined. When game values are
estimated by a heuristic evaluation function that ranges between −∞ and +∞, as is forthcoming in Section 4,
α and β should be initialized to these values instead.

In practice, αβpruning may prune many nodes, or it may prune very few nodes. Its effectiveness depends
on the order in which nodes are evaluated. At its best, it can search to a depth twice that of minimax.
For example, in the game of Chess, αβ pruning might enable search to a depth of 40 rather than 20, which
sounds fantastic since the length of an average Chess game is around 40; however the branching factor in
Chess is 35, and 3520 is still about 7.6× 1030!

One sensible way to order nodes during αβpruning is according to the heuristic evaluation function e. Another
trick is to use iterative deepening on top of depth-limited αβpruning. In this way, search can continue until
the allotted time is elapsed, but a solution is guaranteed at any time.

6



αβPruning

Inputs game tree Γx rooted at x
α: the best known value for Max along an alternative path
β: the best known value for Min along an alternative path

Output minimax value

1. if x ∈ T , return v

2. if l(x) = Max, return MaxValue(Γx , α, β)

3. if l(x) = Min, return MinValue(Γx , α, β)

MaxValue
Inputs game tree Γx rooted at x
Output minimax value

1. v = −∞

2. for all y ∈ T (x)

(a) v = max{v, αβPruning(Γy, α, β)}
(b) if v ≥ β, return v

(c) α = max{α, v}

3. return v

MinValue
Inputs game tree Γx rooted at x
Output minimax value

1. v = +∞

2. for all y ∈ T (x)

(a) v = min{v, αβPruning(Γy, α, β)}
(b) if v ≤ α, return v

(c) β = min{β, v}

3. return v

Table 2: αβpruning algorithm for computing the minimax value of a game. The meanings of these parameters
are: α (resp. β) is the best known value for Max (resp. Min) along an alternative path through the tree.

References

[1] Laszló Kalmár. Zur theorie der abstrakten spiele. Acta Scientiarum Mathematicarum (Szeged), 4(1–
2):65–85, 1928–29.

[2] Ernst Zermelo. Über eine anwendung der mengenlehre auf die theorie des schachspiels. In Proceedings
of the fifth international congress of mathematicians, volume 2, pages 501–504. Cambridge University
Press, 1913.

7


	History of Games in AI
	Two-Player Zero-Sum Games
	Minimax Search
	Depth-Limited Search
	-Pruning

