Foundations of Al Fall 2024
Professor Greenwald Search Unit

Satisfiability

Satisfiability, the first NP-complete problem, is a classic problem in constraint satisfaction. In this lecture, we
describe complete and incomplete algorithms designed to solve satisfiability. Given a formula of propositional
logic, complete methods, such as Davis—Putnam, are guaranteed to find a satisfying assignment, if one exists;
on the other hand, incomplete methods such as GSAT and WALKSAT, which are based on local search
techniques, need not return a satisfying assignment even if one exists, but perform well in practice.

Let A= {x1,...,z,} be an alphabet of propositional variables. Elements of this alphabet are called positive
literals. For each positive literal © € A, there exists the corresponding negative literal —z. A set of literals,
both positive and negative, forms a clause, and a formula consists of a set of clauses. By convention, a
clause is interpreted as the disjunction of its literals, whereas a formula is interpreted as the conjunction of
its clauses. Formulas expressed in this way are said to be in conjunctive normal form.

A truth assignment is a function v : A — {¢, f}. A truth assignment over propositional variables can be
extended to a truth assignment over literals as follows: if v(x) = t, then v(—z) = f; otherwise, if v(x) = f,
then v(—z) = t. Given a truth assignment, a literal is said to be satisfied iff it is assigned the value t.
A conjunction is satisfied iff all its conjuncts are satisfied. A disjunction is satisfied iff at least one of its
disjuncts are satisfied. Given a CNF formula ¢ of propositional logic, the satisfiability problem (SAT) is:

‘ “does there exist a truth assignment under which ¢ is satisfied?” ‘

If such an assignment exists, then ¢ is satisfiable. Otherwise, ¢ is unsatisfiable.

Remark An arbitrary formula of propositional logic constructed using the connectives —, A, V, —, <, <>
and an alphabet of propositional variables can be systematically converted into a CNF formula.

Example The negation of the formula
(A—-(B—->0)— (A= B)—= (A= 0))
can be converted into CNF' as follows:

(A= (B—=-0C)—= (A= B)—=(A—=0)))
iff =(=(mAV (=BVC))V(=(-mAV B)V(-AV(C)))
it (mAV(=BVC))A((mAV B)A-(-AV (D))
ifft (FAV-BVC)A(—AVB)AAAN-C

Some of the most powerful algorithms for solving satisfiability are hill-climbing-style algorithms that view
satisfiability as an optimization problem. These algorithms return satisfying assignments when they are
found; but they are not guaranteed to find a satisfying assignment, even if one exists.

Consider an instance of SAT with n distinct propositional variables and m disjunctive clauses. Viewed
as an optimization problem, the set of states V is the set of truth assignments. If SAT is viewed as a
maximization problem, the objective function f(v) < m denotes the number of clauses that are satisfied in
state v; alternatively, if SAT is viewed as a minimization problem, f(v) > 0 denotes the number of clauses
that are not satisfied in state v. We take the point of view of minimization in this lecture.

GSAT is one specialization of hill-climbing that is tailored to the satisfiability problem. States are assign-
ments of the n propositional variables to {0,1}. A convenient representation for such an assignment is a

bit string b, € {0,1}", where b; denotes the truth value of the ith propositional variable. Based on this
state representation, GSAT uses the following neighborhood operation. A/ (v) is the set of states that are
reachable from v via exactly one bit flip: i.e.,

N(v) = {u € V | HammingDistance(u, v) = 1}

Given start state v = {v(P) = t,v(Q) = f,v(R) = t,v(S) = f,v(T) = t}, we now trace the behavior of
GSAT on the following formula:

(PVQVR)A(=PVRV-T)AN(QV-RVS)A(-RVSV-T)A(PVRVT)

Representing the start state as a bit string yields v = 10101. At state v, (assuming minimization) the
objective function f(v) =2, and

N (v) = {00101, 11101, 10001, 10111, 10100}

The truth values of the clauses are listed below, for each successor state. All clauses are satisfied at state
10111: i.e., f(10111) = 0. Therefore, GSAT terminates after a single iteration at optimal state 10111.

ueNw) | PYQVR | -PVRV-T | QV—-RVS | -RVSV-T | PVYRVT | f
00101 T T F F T 2
11101 T T T F T 1
10001 T F T T T 1
10111 T T T T T 0
10100 T T F T T 1

In practice, GSAT implements the “force-best-move” heuristic, which forces it to accept some move, even if
the best-move beyond the current state is not in fact an improvement. This approach enables the algorithm
to proceed beyond local optima. The GSAT algorithm is depicted in Table

GSAT(¢,N, M)
Inputs CNF formula ¢
number of restarts NV
number of trials per restart M
Output satisfying assignment v or fail

fori=1to N
1. initialize random start state: i.e., random assignment v

(a) forj=1to M
i. if v satisfies ¢, return v
ii. compute the neighborhood of v, N'(v)
iii. let v € argmingepr(y) f(©)

fail

Table 1: GSAT: Selman, Levesque, and Mitchell [1992]. If an incomplete search method like GSAT fails,
then no satisfying assignment was found—however, a satisfying assignment might still exist.

GSAT with random walks is inspired by Papadimitrou’s random walk algorithm for QSATE] which finds a
satisfying assignment in O(n?) bit flips for any 2SAT formula with n variables, with probability 1. Given
2SAT formula ¢,

1The kSAT problem restricts the number of literals per clause to k. 2SAT can be solved in polynomial time, but 3SAT is
NP-complete.

REPEAT

— choose unsatisfied clause C' € ¢ at random
— choose variable z € C' at random

— flip the assignment of z

UNTIL all clauses are satisfied

GSAT + WALK, that is, with random walks, acts like GSAT with probability p, but otherwise chooses an
unsatisfied clause C' € ¢ at random; chooses a variable z € C' at random; and flips the assignment of x. (See

Table 2])

Empirically, one of the best algorithms (as of 2005) for solving SAT is known as WALKSAT. Like GSAT +
Wark, WALKSAT flips the assignment of some variable x that appears in an unsatisfied clause C. Doing so
instantly renders C satisfied, but also has a tendency to render some previously satisfied clauses unsatisfied.
The break-value of a variable x at state v is defined as the number of clauses that are satisfied by v but break
when the value of x is flipped. With probability p, WALKSAT greedily flips the value of a variable x € C of
minimal break value, for some unsatisfied clause C' € ¢. Otherwise, WALKSAT flips the value of a random
variable x € C.

GSAT+WALK(¢, N, M, p)
Inputs CNF formula ¢
number of restarts N
number of trials per restart M
probability p
Output satisfying assignment v or fail

fori=1to N
1. initialize random start state: i.e., random assignment v
(a) forj=1to M

i. if v satisfies ¢, return v

ii. with probability p
A. compute the neighborhood of v, N'(v)
B. let v € argminy,e (v f(uw)

iii. with probability 1 —p
A. choose unsatisfied clause C' € ¢ at random
B. choose variable z € C' at random
C. let v + v with bit x flipped

fail

Table 2: GSAT+WALK [Selman, Kautz, and Cohen, 1994].

WALKSAT (¢, N, M, p)

Inputs

Output

CNF formula ¢

number of restarts NV
number of trials per restart M
probability p

satisfying assignment v or fail

fori=1to N

1.

fail

initialize random start state: i.e., random assignment v

(a) forj=1to M

i
ii.

iii.

iv.

if v satisfies ¢, return v

choose unsatisfied clause C' € ¢ at random

with probability p

A. choose a variable x € C' of minimal break-value
with probability 1 —p

A. choose a variable z € C' at random

let v < v with bit z flipped

Table 3: WALKSAT [Selman, Kautz, and Cohen, 1994].

