
Foundations of AI Fall 2024

Professor Greenwald Search Unit

Satisfiability

Satisfiability, the first NP-complete problem, is a classic problem in constraint satisfaction. In this lecture, we
describe complete and incomplete algorithms designed to solve satisfiability. Given a formula of propositional
logic, complete methods, such as Davis–Putnam, are guaranteed to find a satisfying assignment, if one exists;
on the other hand, incomplete methods such as GSAT and WalkSAT, which are based on local search
techniques, need not return a satisfying assignment even if one exists, but perform well in practice.

Let A = {x1, . . . , xn} be an alphabet of propositional variables. Elements of this alphabet are called positive
literals. For each positive literal x ∈ A, there exists the corresponding negative literal ¬x. A set of literals,
both positive and negative, forms a clause, and a formula consists of a set of clauses. By convention, a
clause is interpreted as the disjunction of its literals, whereas a formula is interpreted as the conjunction of
its clauses. Formulas expressed in this way are said to be in conjunctive normal form.

A truth assignment is a function v : A → {t, f}. A truth assignment over propositional variables can be
extended to a truth assignment over literals as follows: if v(x) = t, then v(¬x) = f ; otherwise, if v(x) = f ,
then v(¬x) = t. Given a truth assignment, a literal is said to be satisfied iff it is assigned the value t.
A conjunction is satisfied iff all its conjuncts are satisfied. A disjunction is satisfied iff at least one of its
disjuncts are satisfied. Given a CNF formula ϕ of propositional logic, the satisfiability problem (SAT) is:

“does there exist a truth assignment under which ϕ is satisfied?”

If such an assignment exists, then ϕ is satisfiable. Otherwise, ϕ is unsatisfiable.

Remark An arbitrary formula of propositional logic constructed using the connectives ¬,∧,∨,→,←,↔
and an alphabet of propositional variables can be systematically converted into a CNF formula.

Example The negation of the formula

(A→ (B → C))→ ((A→ B)→ (A→ C))

can be converted into CNF as follows:

¬((A→ (B → C))→ ((A→ B)→ (A→ C)))
iff ¬(¬(¬A ∨ (¬B ∨ C)) ∨ (¬(¬A ∨B) ∨ (¬A ∨ C)))
iff (¬A ∨ (¬B ∨ C)) ∧ ((¬A ∨B) ∧ ¬(¬A ∨ C))
iff (¬A ∨ ¬B ∨ C) ∧ (¬A ∨B) ∧A ∧ ¬C

Some of the most powerful algorithms for solving satisfiability are hill-climbing-style algorithms that view
satisfiability as an optimization problem. These algorithms return satisfying assignments when they are
found; but they are not guaranteed to find a satisfying assignment, even if one exists.

Consider an instance of SAT with n distinct propositional variables and m disjunctive clauses. Viewed
as an optimization problem, the set of states V is the set of truth assignments. If SAT is viewed as a
maximization problem, the objective function f(v) ≤ m denotes the number of clauses that are satisfied in
state v; alternatively, if SAT is viewed as a minimization problem, f(v) ≥ 0 denotes the number of clauses
that are not satisfied in state v. We take the point of view of minimization in this lecture.

GSAT is one specialization of hill-climbing that is tailored to the satisfiability problem. States are assign-
ments of the n propositional variables to {0, 1}. A convenient representation for such an assignment is a

1



bit string bn ∈ {0, 1}n, where bi denotes the truth value of the ith propositional variable. Based on this
state representation, GSAT uses the following neighborhood operation. N (v) is the set of states that are
reachable from v via exactly one bit flip: i.e.,

N (v) = {u ∈ V | HammingDistance(u, v) = 1}

Given start state v = {v(P ) = t, v(Q) = f, v(R) = t, v(S) = f, v(T ) = t}, we now trace the behavior of
GSAT on the following formula:

(P ∨Q ∨R) ∧ (¬P ∨R ∨ ¬T ) ∧ (Q ∨ ¬R ∨ S) ∧ (¬R ∨ S ∨ ¬T ) ∧ (P ∨R ∨ T )

Representing the start state as a bit string yields v = 10101. At state v, (assuming minimization) the
objective function f(v) = 2, and

N (v) = {00101, 11101, 10001, 10111, 10100}

The truth values of the clauses are listed below, for each successor state. All clauses are satisfied at state
10111: i.e., f(10111) = 0. Therefore, GSAT terminates after a single iteration at optimal state 10111.

u ∈ N (v) P ∨Q ∨R ¬P ∨R ∨ ¬T Q ∨ ¬R ∨ S ¬R ∨ S ∨ ¬T P ∨R ∨ T f
00101 T T F F T 2
11101 T T T F T 1
10001 T F T T T 1
10111 T T T T T 0
10100 T T F T T 1

In practice, GSAT implements the “force-best-move” heuristic, which forces it to accept some move, even if
the best-move beyond the current state is not in fact an improvement. This approach enables the algorithm
to proceed beyond local optima. The GSAT algorithm is depicted in Table 1.

GSAT(ϕ,N,M)
Inputs CNF formula ϕ

number of restarts N
number of trials per restart M

Output satisfying assignment v or fail

for i = 1 to N

1. initialize random start state: i.e., random assignment v

(a) for j = 1 to M

i. if v satisfies ϕ, return v

ii. compute the neighborhood of v, N (v)

iii. let v ∈ argminu∈N (v) f(u)

fail

Table 1: GSAT: Selman, Levesque, and Mitchell [1992]. If an incomplete search method like GSAT fails,
then no satisfying assignment was found—however, a satisfying assignment might still exist.

GSAT with random walks is inspired by Papadimitrou’s random walk algorithm for 2SAT,1 which finds a
satisfying assignment in O(n2) bit flips for any 2SAT formula with n variables, with probability 1. Given
2SAT formula ϕ,

1The kSAT problem restricts the number of literals per clause to k. 2SAT can be solved in polynomial time, but 3SAT is
NP-complete.

2



REPEAT

– choose unsatisfied clause C ∈ ϕ at random

– choose variable x ∈ C at random

– flip the assignment of x

UNTIL all clauses are satisfied

GSAT +Walk, that is, with random walks, acts like GSAT with probability p, but otherwise chooses an
unsatisfied clause C ∈ ϕ at random; chooses a variable x ∈ C at random; and flips the assignment of x. (See
Table 2.)

Empirically, one of the best algorithms (as of 2005) for solving SAT is known as WalkSAT. Like GSAT+
Walk, WalkSAT flips the assignment of some variable x that appears in an unsatisfied clause C. Doing so
instantly renders C satisfied, but also has a tendency to render some previously satisfied clauses unsatisfied.
The break-value of a variable x at state v is defined as the number of clauses that are satisfied by v but break
when the value of x is flipped. With probability p, WalkSAT greedily flips the value of a variable x ∈ C of
minimal break value, for some unsatisfied clause C ∈ ϕ. Otherwise, WalkSAT flips the value of a random
variable x ∈ C.

GSAT+Walk(ϕ,N,M, p)
Inputs CNF formula ϕ

number of restarts N
number of trials per restart M
probability p

Output satisfying assignment v or fail

for i = 1 to N

1. initialize random start state: i.e., random assignment v

(a) for j = 1 to M

i. if v satisfies ϕ, return v

ii. with probability p

A. compute the neighborhood of v, N (v)

B. let v ∈ argminu∈N (v) f(u)

iii. with probability 1− p

A. choose unsatisfied clause C ∈ ϕ at random

B. choose variable x ∈ C at random

C. let v ← v with bit x flipped

fail

Table 2: GSAT+Walk [Selman, Kautz, and Cohen, 1994].

3



WalkSAT(ϕ,N,M, p)
Inputs CNF formula ϕ

number of restarts N
number of trials per restart M
probability p

Output satisfying assignment v or fail

for i = 1 to N

1. initialize random start state: i.e., random assignment v

(a) for j = 1 to M

i. if v satisfies ϕ, return v

ii. choose unsatisfied clause C ∈ ϕ at random

iii. with probability p

A. choose a variable x ∈ C of minimal break-value

iv. with probability 1− p

A. choose a variable x ∈ C at random

v. let v ← v with bit x flipped

fail

Table 3: WalkSAT [Selman, Kautz, and Cohen, 1994].

4


