
Artificial Intelligence Spring 2005

Professor Greenwald Lecture #12

Reinforcement Learning1

We continue our study of Markov reward processes and decision processes, shift-
ing our emphasis from dynamic programming to reinforcement learning. Rein-
forcement learning is more generally applicable than dynamic programming,
since (i) it does not require sweeps over the entire state space and (ii) it does
not depend on the assumption that the probabilistic nature of the environment
or the reward structure is known. In this lecture, we compute state and action
value functions using only agents’ trial-and-error “experiences.” The algorithms
we study, Monte Carlo estimation, TD-learning, Q-learning and sarsa, incre-
mentally estimate state and action values from sample trajectories.

1 Incremental Estimation

Our present goal is to learn state- and action-value functions from experience.

One plausible estimate of an unknown quantity is simply the average value, say
Ak, of k samples, say z1, . . . , zk. Given Ak and the k + 1st sample, rather than
recompute the sum of the first k samples, add the value of the k + 1st sample,
and divide by k + 1, we update Ak+1 incrementally as follows:

Ak+1 =
1

k + 1

k+1
∑

t=1

zt

=
1

k + 1

[

zk+1 +

k
∑

t=1

zt

]

=
1

k + 1
[zk+1 + kAk + Ak −Ak]

=
1

k + 1
[zk+1 + (k + 1)Ak −Ak]

= Ak +
1

k + 1
[zk+1 −Ak] (1)

=
k

k + 1
Ak +

1

k + 1
zk+1 (2)

More generally, the value of the k + 1st sample zk+1 in Equation 1 can be
replaced by an arbitrary “target” value A. Similarly, the fraction 1/(k + 1),
which decreases with the number of samples, can be generalized by a function
0 < αt ≤ 1 that decays with time t, in which case k/(k+1) is replaced by 1−αt.

1Copyright c© Amy Greenwald, 2001–05

1



In the following equations, the new estimate At+1 depends in part on the old
estimate At and in part on the target A, where “in part” is quantified by αt:

At+1 = (1− αt)At + αtA (3)

= At + αt [A−At] (4)

Equation 3 generalizes Equation 2; Equation 4 generalizes Equation 1.

2 Learning State Values

Effective techniques for learning state-value functions (i.e., policy evaluation)
include Monte Carlo estimation and TD-learning. These algorithms estimate
state values incrementally using update rules that specialize Equation 4.

2.1 Monte Carlo Estimation

Given policy π, Monte Carlo methods repeatedly generate state trajectories τ
according to π and compute V π(st) via Equation 4, setting the target value
A = ρτt whenever trajectory τ is traversed, as follows:

V π(st)← V π(st) + αt[ρ
τ
t − V π(st)] (5)

This technique depends on the computation of ρτt = rt + γrt+1 + γ2rt+2 . . ..
Thus, it is only applicable if there exists t′ > t s.t. for all t′′ > t′, rt′′ = 0: i.e.,
a zero-reward, absorbing state. (Let T ⊆ S denote the set of absorbing states.)

A policy is called proper iff all trajectories it engenders eventually lead to an
absorbing state, with probability 1. Assuming the policy π is proper, Monte
Carlo methods simulate episodes, beginning at a random start state and leading
to an absorbing state (with probability 1). Note that for such episodes it is
well-defined to simply let ρτt be the sum of future rewards (i.e., γ = 1).

2.2 TD-Learning

Recall Bellman’s equations for policy evaluation:

V π(st) = rt + γEst+1
[V π(st+1)] (6)

TD-learning iteratively computes V π(st) via the following instantiation of Eq. 4:

V π(st)← V π(st) + αt[rt + γV π(st+1)− V π(st)] (7)

Here A = rt + γV π(st+1). This error term is called the temporal difference.
Unlike Monte Carlo methods, which set the target value according to the returns
achieved upon termination of a trajectory, TD-learning—inspired by Bellman’s
theorem—updates based on intermediate rewards. Note that the effectiveness
of TD-learning does not depend on the assumption that the policy π is proper.

2



monte carlo(MDP, π, γ)
Inputs policy π

discount factor γ
Output value function V π

Initialize V = 0, α according to schedule

repeat

1. initialize s, τ, ρ

2. while s 6∈ T do

(a) let τ = τ ∪ {s}

(b) take action a = π(s)

(c) observe reward r, next state s′

(d) for all s ∈ τ , let ρ(s) = ρ(s) + r

(e) let s = s′

3. for all s ∈ τ , V (s) = V (s) + α[ρ(s) − V (s)]

4. decay α according to schedule

forever

Table 1: Monte Carlo Estimation for γ = 1. (Exercise Rewrite for 0 ≤ γ ≤ 1.)

td learning(MDP, π, γ)
Inputs policy π

discount factor γ
Output value function V π

Initialize V = 0, α according to schedule

repeat

1. initialize s

2. while s 6∈ T do

(a) take action a = π(s)

(b) observe reward r, next state s′

(c) V (s) = V (s) + α[r + γV (s′)− V (s)]

(d) let s = s′

(e) decay α according to schedule

forever

Table 2: TD-Learning.

3



2.3 Example: Gambler’s Ruin

We now compare the behavior of the Monte Carlo method and TD-learning on
several sample trajectories in the Gambler’s Ruin, for fixed α = 0.1 and γ = 1.

Trajectory Monte Carlo TD-learning

4 V (4) = 0 + .1[1− 0] = .1 V (4) = 0 + .1[1 + 0− 0] = .1

3→ 4 V (3) = 0 + .1[1− 0] = .1 V (3) = 0 + .1[0 + .1− 0] = .01

V (4) = .1 + .1[1− .1] = .19 V (4) = .1 + .1[1 + 0− .1] = .19

2→ 3→ 4 V (2) = 0 + .1[1− 0] = .1 V (2) = 0 + .1[0 + .01− 0] = .001

V (3) = .1 + .1[1− .1] = .19 V (3) = .01 + .1[0 + .19− .01] = .028

V (4) = .19 + .1[1− .19] = .271 V (4) = .19 + .1[1 + 0− .19] = .271

3→ 2→ 1→ 0 V (3) = .19 + .1[0− .19] = .171 V (3) = .028 + .1[0 + .001− .028] = .0253

V (2) = .1 + .1[0− .1] = .09 V (2) = .001 + .1[0 + 0− .001] = .0009

V (1) = 0 + .1[0− 0] = 0 V (1) = 0 + .1[0 + 0− 0] = 0

V (0) = 0 + .1[0− 0] = 0 V (0) = 0 + .1[0 + 0− 0] = 0

Given policy π, Monte Carlo estimation and TD-learning are both guaranteed
to converge to V π if the learning rate αt decreases appropriately over time (fixed
values such as 0.1 are often used in practice). TD typically converges faster,
because it makes use of intermediate estimates, whereas Monte Carlo estimation
methods update based on the final return.

3 Learning Action Values

We now turn our attention to algorithms that learn action-value functions, from
which we can derive an optimal policy. We present two learning algorithms: Q-
learning and sarsa. Q-learning is an off-policy learning algorithm—it learns
by exploring the space of states and actions arbitrarily. sarsa is an on-policy

learning algorithm—it learns by exploring the space of actions prescribed by the
current policy. The degree of exploration in Q-learning (or any off-policy algo-
rithm) can greatly exceed that of sarsa (or any on-policy algorithm), leading
to faster convergence. In the descriptions that follow, we assume trajectories
are given. Later, we describe how to gather data (i.e., trajectories).

Q-Learning Whereas TD-learning is an application of Bellman’s theorem for
V , Q-learning is based on Bellman’s optimality equations for Q:

Q∗(st, at) = R(st, at) + γE[max
a

Q∗(st+1, a)] (8)

4



The corresponding update rule is the basis for Q-learning:

Q(st, at)← Q(st, at) + αt[rt + γmax
a

Q(st+1, a)−Q(st, at)] (9)

In contrast to sarsa, Q-learning is an off-policy learning algorithm, since it
need not exploit actions prescribed by the current optimal policy.

SARSA The sarsa learning algorithm is an on-policy algorithm that learns
based on (st, at, rt, st+1, at+1). Given state-action pair (st, at), sarsa simulates
the action at in state st to obtain the reward rt and transition to state st+1.
The algorithm then uses its current optimal policy—based on the current Q
values—to generate its next action at+1 (but with probability ǫ it chooses an
action at random). sarsa now updates as follows:

Q(st, at)← Q(st, at) + αt[rt + γQ(st+1, at+1)−Q(st, at)] (10)

This update is based on the following variant of Bellman’s optimality equations:

Q∗(st, at) = R(st, at) + γE[Q∗(st+1, π
∗(st+1))] (11)

Exploration vs. Exploitation Recall that in the reinforcement learning
framework it is not assumed that the probabilistic nature of the environment is
known. Moreover, it is also not assumed that the reward structure is known.
Instead, reinforcement learning agents wander through their environments learn-
ing about rewards only at the states they visit only for the actions they employ.

Naturally, such agents would aim to reinforce, that is “become more and more
likely to employ,” those actions that are found to be the most rewarding. With
this objective in mind, reinforcement learning agents are susceptible to the
trade-offs between exploration and exploitation (as in simulated annealing) while
learning action values. By exploiting actions that have been proven themselves
to be successful in the past, it is possible to perform well; but by exploring

alternative actions, it is possible to perform even better.

One popular method of exploration is ǫ-greedy: if π is the current optimal policy
and s is the current state, with probability 1−ǫ, exploit—take action π(s)—but
with probability ǫ, explore—choose an action at random. Typically, ǫ is decayed
over time (e.g., ǫ ∼ 1/t). This technique, however, explores seemingly optimal
and sub-optimal actions with equal probability. An alternative is to use the
softmax action selection method, which relies on the Boltzmann distribution.
Specifically, given state st, action a is selected with the following probability:

eQ(st,a)/T

∑

a′eQ(st,a′)/T

where the temperature parameter T gradually decreases. All actions are nearly
equiprobable at initial higher temperatures; in contrast, lower temperatures
extol the virtues of some actions but belittle others.

5



q learning(MDP, γ)
Inputs discount factor γ, exploration policy
Output action-value function Q∗

Initialize Q = 0, α according to schedule

repeat

1. initialize s, a

2. while s 6∈ T do

(a) take action a

(b) observe reward r, next state s′

(c) Q(s, a) = Q(s, a) + α[r + γmaxa′ Q(s′, a′)−Q(s, a)]

(d) choose action a′ according to the exploration policy

(e) s = s′, a = a′

(f) decay α according to schedule

forever

Table 3: Q-Learning: Off-policy reinforcement learning.

sarsa(MDP, γ)
Inputs discount factor γ, exploration rate ǫ
Output action-value function Q∗

Initialize Q = 0, α according to schedule

repeat

1. initialize s, a, π

2. while s 6∈ T do

(a) take action a

(b) observe reward r, next state s′

(c) choose random action a′, with probability ǫ
choose action a′ = π(s′), with probability 1− ǫ

(d) Q(s, a) = Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]

(e) π(s) ∈ argmaxa′′ Q(s, a′′)

(f) s = s′, a = a′

(g) decay α according to schedule

forever

Table 4: SARSA: On-policy Reinforcement Learning.

6



3.1 Example: Deterministic Maze

In case of deterministic environments, the update rules forQ-learning and sarsa
simplify as follows:

Q(st, at)← rt + γQ(st+1, at+1) (12)

Q(st, at)← rt + γmaxa Q(st+1, a) (13)

Figure 1 depicts a deterministic maze. Possible moves are indicated by arrows.
The final (absorbing) state is F; upon transitioning into state F, a reward of
100 is obtained. All other rewards are zero.

Let γ = 0.9. (Since γ < 1, it functions like a cost in this example.)

DB

C E F

A

100

100

Figure 1: Deterministic Maze.

Value Iteration

Q(s, a) l r u d

A — 81 81 —
B 0 90 90 —
C — 90 — 0
D 0 — 100 —
E 0 100 — 0

V (s)

A 81
B 90
C 90
D 100
E 100

Q(s, a) l r u d

A — 81 81 —
B 73 90 90 —
C — 90 — 73
D 81 — 100 —
E 81 100 — 81

V (s)

A 81
B 90
C 90
D 100
E 100

7



Q-Learning

Trajectory Q-Learning

D → F Q(D,u) = 100 + .9maxa Q(F, a) = 100
E → F Q(E,r) = 100 + .9maxa Q(F, a) = 100
C → E → F Q(C,r) = 0 + .9maxa Q(E, a) = 90
A → C → E → F Q(A,u) = 0 + .9maxa Q(C, a) = 81
B → A → C → E → F Q(B,l) = 0 + .9maxa Q(A, a) = 73
D → B → A → C → E → F Q(D,l) = 0 + .9maxa Q(B, a) = 66
E → B → D → F Q(B,r) = 0 + .9maxa Q(D, a) = 90

Q(E,d) = 0 + .9maxa Q(B, a) = 81

SARSA

Trajectory Q-Learning

D → F Q(D,u) = 100 + .9Q(F,q) = 100
E → F Q(E,r) = 100 + .9Q(F,q) = 100
C → E → F Q(C,r) = 0 + .9Q(E,r) = 90
A → C → E → F Q(A,u) = 0 + .9Q(C,r) = 81
B → A → C → E → F Q(B,l) = 0 + .9Q(A,u) = 73
D → B → A → C → E → F Q(D,l) = 0 + .9Q(B,l) = 66
E → B → D → F Q(B,r) = 0 + .9Q(D,u) = 90

Q(E,d) = 0 + .9Q(B,r) = 81

4 Eligibility Traces: A Unified View

Recall that TD-learning updates via the target value:

R
(1)
t = rt + γV (st+1)

In contrast, Monte Carlo methods update via the target value:

R
(T )
t = rt + γrt+1 + . . .+ γT−trT

An equally reasonable target value is the n-step return, or lookahead value:

R
(n)
t = rt + γrt+1 + . . .+ γn−1rt+n−1 + γnV (st+n)

In fact, any weighted combination of targets of this form is a reasonable target.
TD-λ updates as follows: for 0 ≤ λ < 1,

R
(λ)
t = (1− λ)

∞
∑

n=1

λn−1R
(n)
t

If λ = 0, TD-λ reduces to simple TD-learning. If λ = 1, TD-λ reduces to Monte
Carlo estimation.

8



4.1 TD-λ

et+1(s) =

{

γλet(s) + 1 if s = st
γλet(s) otherwise

(14)

td(λ) learning(MDP, π, γ, λ)
Inputs policy π

discount factor γ
exponential weight λ

Output value function V π

Initialize V = 0, α according to schedule

repeat

1. reset e, initialize s

2. while s 6∈ T do

(a) e(s) = e(s) + 1

(b) take action a = π(s)

(c) observe reward r, next state s′

(d) for all s ∈ S

i. V (s) = V (s) + α[r + γV (s′)− V (s)]e(s)

ii. e(s) = γλe(s)

(e) let s = s′

(f) decay α according to schedule

forever

Table 5: TD(λ)-Learning.

9



4.2 SARSA-λ

et+1(s, a) =

{

γλet(s, a) + 1 if s = st and a = at
γλet(s, a) otherwise

(15)

sarsa(λ)(MDP, γ, λ)
Inputs discount factor γ

exponential weight λ
Output action-value function Q∗

Initialize Q = 0, α according to schedule

repeat

1. reset e, initialize s, a, π

2. while s 6∈ T do

(a) take action a

(b) observe reward r, next state s′

(c) choose random action a′, with probability ǫ
choose action a′ = π(s′), with probability 1− ǫ

(d) e(s, a) = e(s, a) + 1

(e) for all s ∈ S

i. for all a ∈ A

A. Q(s, a) = Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]e(s, a)

B. e(s, a) = γλe(s, a)

(f) π(s) ∈ argmaxa′′ Q(s, a′′)

(g) s = s′, a = a′

(h) decay α according to schedule

forever

Table 6: SARSA(λ).

10



Problems

#1 The figure below depicts a Markov reward process with seven states. Every
state except the terminal state has two possible successors, each of which occurs
with probability 0.5. Rewards are associated with transitions as shown.

3 2 1 0
−3.0−3.0

−3.0 −3.0

−3.0

START

6 5 4
−3.0 −3.0

−3.0 −3.0

−3.0

−1.0−3.0

Suppose the following sample trajectories are observed:

1. 6
−3
−→ 5

−3
−→ 4

−3
−→ 3

−3
−→ 2

−3
−→ 1

−1
−→ 0

2. 6
−3
−→ 4

−3
−→ 2

−3
−→ 0

Assume the values V (s) are initialized to 0, the learning rate α = 0.5, and the
discount factor γ = 1.

(a) After learning from the first of these trajectories, what value does Monte-
Carlo learning assign to each state?

(b) After learning from the second of these trajectories, what value does TD
learning assign to each state?

(c)Model-based learning. An alternative to TD or Monte-Carlo learning is to use
the observed sample trajectories to construct a “best guess” at the model that
generated those trajectories, and then to solve that model using value iteration.
The transition probabilities of the “best guess” model are defined as follows:

P (s′|s) =
number of transitions s→ s′ in all observed trajectories

total number of visits to state s in all observed trajectories

The rewards model R(s, s′) of state transitions out of s into s′ is given by:

R(s, s′) = the mean of all rewards observed on transitions s→ s′

Draw the “best-guess” model corresponding to the two observed trajectories,
and solve it using value iteration.

11


