
Foundations of AI Fall 2024

Professors Greenwald and Ewing Knowledge Representation

Probability Primer

Up until this point, we have worked with search problems where we have a known state space (X), start
state (S), transition function (T ), and goal state (G). These problems are well-defined, and we can solve
them systematically. However, in the real world, things aren’t always so clear-cut. Often, we don’t know
the exact state of the system (X) or how it will change over time (T ). The physical world is filled with
uncertainty, which makes reasoning and decision-making more challenging.

For the remainder of this class, we will deal with this uncertainty by introducing probabilities. Probabilities
allow us to model situations where we don’t have complete knowledge and make predictions based on partial
information. In AI, handling uncertainty is fundamental, and probabilistic reasoning helps us make better
decisions in complex environments.

1 Summarizing Uncertainty

Let’s consider the example of diagnosing a dental patient with a toothache to explore uncertain reasoning.
In any field—whether it’s medicine, auto repair, or another—diagnosis often involves uncertainty. To un-
derstand where a logical approach might fall short, let’s attempt to create rules for dental diagnosis using
propositional logic. One might start with a basic rule like this:

Toothache =⇒ Cavity

However, this rule is flawed. Not every patient with a toothache has a cavity; some may suffer from gum
disease, an abscess, or other issues. We could revise the rule as follows:

Toothache =⇒ Cavity ∨GumProblem ∨Abscess . . .

Even this approach poses challenges, as it would require a long list of possible causes. Another option might
be to reverse the rule:

Cavity =⇒ Toothache

But this, too, is inaccurate—not all cavities result in pain. To fully address this complexity, we would need
to consider every condition that could cause a cavity to produce a toothache, making the rule excessively
detailed. Moreover, medical knowledge does not provide complete theories for every condition, which adds
to the difficulty.

Clearly, pure logic doesn’t work well in such uncertain environments. Instead, we use probability to
represent uncertainty, allowing us to handle this complexity more effectively.

Example: Consider the probability of flipping a coin and it landing heads, which is 0.5. What does this
number represent? This probability, like all probabilities, is a value between 0 and 1. It reflects uncertainty
by indicating that the outcome is not guaranteed to always be heads (true) or tails (false). Instead, it
suggests that the coin will land heads half the time and tails the other half, capturing the idea that the
result varies with each flip.
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2 Conditional Probability

Let’s revisit the question: Does a toothache always imply a cavity?

Not necessarily—a toothache could result from a cavity, gum issues, or even a chipped tooth. This is called
the qualification problem, where the logical formulas needed to describe all possible outcomes would be
incredibly long and complex.

Instead of using pure logic, we can use conditional probability to represent this uncertainty. Consider
the following probability:

P (toothache | cavity) = some number

This number represents the probability that a toothache will occur given that you have a cavity.

Definitions:

• Prior Probability: e.g., P (cavity) = 0.2: This is the probability of having a cavity without con-
sidering additional information. You can interpret this in two ways:

– Out of 10 randomly sampled people, 2 would likely have a cavity (i.e., frequency interpretation).

– If you have no prior knowledge about an individual, the probability that they have a cavity is
20% (i.e., probability represents uncertainty).

• Posterior Probability: e.g., P (cavity | toothache) = 0.6: This is the probability of having a cavity
given that you have a toothache. This is a posterior probability because it considers additional
evidence to update the likelihood. Note that it doesn’t change the value of the prior.

For the rest of the semester, we will use this probabilistic foundation in machine learning and acting under
uncertainty, where we predict probabilities (e.g., a certain class) based on available evidence (e.g., an image).

3 Joint Probability

Joint Probability refers to the probability of two events occurring together. For two random variables,
say a and b, the joint probability is denoted as P (a, b) or P (a ∧ b), which represents the probability of both
a and b happening simultaneously.

Example: Consider two independent events:

• a: The event that a die shows 3.

• b: The event that a coin lands heads.

The probability of rolling a 3 on a six-sided die is:

P (a) =
1

6

The probability of flipping a heads on a fair coin is:

P (b) =
1

2

2



Since the die roll and the coin flip are independent events, the joint probability is simply the product of the
two probabilities:

P (a ∧ b) = P (a)× P (b) =
1

6
× 1

2
=

1

12

Thus, the joint probability of the die showing 3 and the coin landing heads is P (a ∧ b) = 1
12 .

Example: Consider two dependent events:

• a: The event that the die shows 3.

• b: The event that the die shows an odd number.

Let’s list out all the possible outcomes and count up the number of times both events are true. The possible
outcomes for a six-sided die are: 1, 2, 3, 4, 5, and 6. The odd numbers are 1, 3, and 5. We want to calculate
the joint probability P (a ∧ b), which represents the probability that both a (the die shows 3) and b (the die
shows an odd number) are true.

#rolled a (die = 3) b (die = odd)
1 0 1
2 0 0
3 1 1
4 0 0
5 0 1
6 0 0

Table 1: Possible outcomes for a die roll showing 3 and an odd number.

Each row in the table corresponds to one of the six possible outcomes of the die. The probability for each
row is 1

6 , since each outcome is equally likely.

In this case, P (a ∧ b) is only true in row 3, where both a (die = 3) and b (die is odd) are 1. Therefore, the
joint probability P (a ∧ b) = 1

6 .

Let’s also consider the conditional probability P (a | b), which is the probability that the die shows 3 given
that it is odd. We eliminate the possibility of even numbers (2, 4, 6) and are left with the odd numbers (1,
3, 5). Given that the die is odd, there are 3 equally likely outcomes, and only one of them is a 3:

P (a | b) = 1

3

Notice, however, that listing all possible outcomes can quickly become overwhelming as the number of
variables increases. In many cases, we may not even be aware of all the possibilities that exist in the real
world, making this approach impractical.

4 Bayes’ Rule

We will derive Bayes’ Rule to help us avoid this generally impractical method of listing all possible outcomes.
Specifically, it helps us update probabilities based on new evidence without needing to explicitly compute
every joint probability.

In general, the conditional probability of a given b is defined as:

P (a | b) = P (a ∧ b)

P (b)
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This formula represents the probability of a and b occurring together (joint probability P (a∧b)), normalized
by the probability of b occurring.

We can manipulate the conditional probability formula to derive Bayes’ Rule. Starting with:

P (a | b) = P (a ∧ b)

P (b)

We know that P (a ∧ b) is symmetric, meaning:

P (a ∧ b) = P (b | a)× P (a)

Substituting this back into the equation gives:

P (a | b) = P (b | a)× P (a)

P (b)

This is Bayes’ Rule, which allows us to reverse conditional probabilities when the opposite condition is
known. It is widely used in machine learning and probabilistic reasoning, especially when new evidence (like
b) changes our belief about a.

Bayes Rule : P (a | b) = P (b | a)× P (a)

P (b)

Where:

• P (a | b): The posterior probability of a, given b.

• P (b | a): The likelihood of observing b, given that a is true.

• P (a): The prior probability of a (before considering b).

• P (b): The evidence or normalization factor, which ensures the probabilities sum to 1.

5 Independence

Independence is a core assumption in probability (although it doesn’t always hold true in the real world).

5.1 Formal Definition

In probability, two events a and b are independent if the occurrence of one does not affect the probability of
the other. The formal definition of independence is:

P (a ∧ b) = P (a)× P (b)

This means the probability of both events occurring together (their joint probability) is simply the product
of their individual probabilities.

Example: Consider rolling a die and flipping a coin. The outcome of the die roll (e.g., landing on a 3) is
independent of the outcome of the coin flip (e.g., heads or tails). Therefore:

P (die = 3 ∧ coin = heads) = P (die = 3)× P (coin = heads)
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Since the probability of the die showing 3 is 1
6 and the probability of heads is 1

2 , the joint probability is:

P (die = 3 ∧ coin = heads) =
1

6
× 1

2
=

1

12

Thus, the events are independent because one outcome does not affect the other.

5.2 Conditional Definition

If two events are independent, then knowing that b occurred does not change the probability of a. Thus, the
conditional probability of a given b is just the same as the probability of a by itself:

P (a | b) = P (a)

This means that adding evidence from b does not provide any new information about a.

6 Sample Problems

toothache ¬toothache
catch ¬catch catch ¬catch

cavity 0.108 0.012 0.072 0.008
¬cavity 0.016 0.064 0.144 0.576

Table 2: Joint probability distribution for toothache, cavity, and catch.

We can use table 2 to find the following probabilities:

1. P (cavity)

2. P (cavity | toothache)

3. P (¬cavity | toothache)

• Note: P (cavity | toothache) + P (¬cavity | toothache) = 1.

4. P (cavity | toothache ∧ instrument catches)

Solutions

1. P (cavity)

To calculate P (cavity), sum all the probabilities in the cavity row:

P (cavity) = 0.108 + 0.012 + 0.072 + 0.008 = 0.200

So, the probability that a patient has a cavity is P (cavity) = 0.200.

2. P (cavity | toothache)
The formula for conditional probability is:

P (cavity | toothache) = P (cavity and toothache)

P (toothache)
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From the table:
P (cavity and toothache) = 0.108 + 0.012 = 0.120

The total probability of a toothache is the sum of all values in the toothache columns:

P (toothache) = (0.108 + 0.012) + (0.016 + 0.064) = 0.200

Now, substitute into the conditional probability formula:

P (cavity | toothache) = 0.120

0.200
= 0.600

So, P (cavity | toothache) = 0.600.

3. P (¬cavity | toothache)
From the conditional probability formula:

P (¬cavity | toothache) = P (¬cavity and toothache)

P (toothache)

From the table:
P (¬cavity and toothache) = 0.016 + 0.064 = 0.080

We already know P (toothache) = 0.200. So:

P (¬cavity | toothache) = 0.080

0.200
= 0.400

Therefore, P (¬cavity | toothache) = 0.400.

Check: Since P (cavity | toothache) + P (¬cavity | toothache) = 1:

0.600 + 0.400 = 1

This confirms our calculations.

4. P (cavity | toothache ∧ instrument catches)

The formula for this conditional probability is:

P (cavity | toothache ∧ instrument catches) =
P (cavity and toothache and catch)

P (toothache and catch)

From the table:
P (cavity and toothache and catch) = 0.108

The total probability of toothache and instrument catching is:

P (toothache and catch) = 0.108 + 0.016 = 0.124

Now substitute into the conditional probability formula:

P (cavity | toothache ∧ instrument catches) =
0.108

0.124
≈ 0.871

Therefore, P (cavity | toothache ∧ instrument catches) ≈ 0.871.
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7 Chain Rule

Recall the definition of conditional probability:

P (a | b) = P (a ∧ b)

P (b)

Equivalently,
P (a ∧ b) = P (a | b)P (b)

More generally,

P (a ∧ b ∧ c) = P (a | b ∧ c)P (b ∧ c)

= P (a | b ∧ c)P (b | c)P (c)

and

P (a ∧ b ∧ c ∧ d) = P (a | b ∧ c ∧ d)P (b ∧ c ∧ d)

= P (a | b ∧ c ∧ d)P (b | c ∧ d)P (c ∧ d)

= P (a | b ∧ c ∧ d)P (b | c ∧ d)P (c | d)P (d)

In other words, given a sequence of random variables X1, . . . , Xn,

P (X1, . . . , Xn) = P (X1)P (X2 | X1)P (X3 | X2, X1) . . . P (Xn | Xn−1, . . . , X1)

= P (X1)

n∏
i=2

P (Xi | Xi−1 . . . X1)

8 Marginalization

A full joint distribution explains the probabilistic relationships among all the random variables in our model.
But sometimes we are interested in relationships among specific, but not all, variables.

As a very simple example, consider a joint probability distribution over the weather W (sun or rain) and
the temperature T (hot or cold). An example joint distribution over W and T is shown below.

W T P (W,T )

sun hot 0.4
sun cold 0.3
rain hot 0.2
rain cold 0.1

We can “marginalize over” T to compute P (W ); similarly, we can marginalize over W to compute P (T ):

W P (W )

sun 0.7
rain 0.3

T P (T )

hot 0.6
cold 0.4
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In general, to marginalize over a random variable in a joint distribution is to tallly the joint probabilities
over all its possible values: e.g., P (W ) =

∑
t∈T P (W,T = t) and P (T ) =

∑
w∈W P (T,W = w).

A very common use case for marginalization is a setting in which we are trying to infer a probability
distribution over a query, given some evidence, but where some relevant information is unavailable. For
example, a doctor may be trying to diagnose a disease from symptoms, and may have administered one of
three possible tests. In this case, the query is the disease, the evidence includes the symptoms and the one
test result, and the variables to marginalize over when inferring disease probabilities are the other two tests.

8


	Summarizing Uncertainty
	Conditional Probability
	Joint Probability
	Bayes' Rule
	Independence
	Formal Definition
	Conditional Definition

	Sample Problems
	Chain Rule
	Marginalization

