
Foundations of AI Fall 2024

Professors Greenwald and Ewing DRAFT: Perceptrons and Neural Networks

Thus far, our discussion of supervised learning has been limited to techniques designed for classifica-
tion. With the introduction of artificial neural networks (ANNs), we expand the capabilities of supervised
learning systems to include continuous-valued function approximation (i.e., regression). As is usual with
supervised learning, the goal of learning via neural networks is function approximation. Thus, a neural
network represents a function, which takes as input a vector x⃗ ∈ Rn, and output a vector z⃗ ∈ Rm. Given a
data set consisting of training examples, the intent is to train the network by adjusting its weights until its
approximation error is sufficiently small. In this lecture, we present ANNs as classifiers, based on threshold
and sigmoidal units, as well as ANNs as general function approximators, via combinations of linear and
non-linear units.

1 Neural Units

Motivated by the design of biological learning systems, artificial neural networks are complex webs of simple
neural units interconnected in parallel structures. The connections among the units are typically described
using a directed graph, with edges that are labeled by weights. Each processing unit is equipped with a very
simple program, which (i) computes a weighted sum of the input data it receives from those units which
feed into it, and (ii) outputs a single value, which is some function of the weighted sum of its inputs. (See
Figure 1.)

Figure 1: Neural Unit.

In 1943, McCulloch and Pitts proved that ANNs are universal machines. The networks they analyzed
were composed of binary threshold units, which take as input binary vector x⃗ = (x1, . . . , xn) and output
binary vector z⃗ = (z1, . . . , zm) s.t.:

zk = g

(
n∑

i=1

wikxi − θk

)
(1)

where the transfer function g is the step function, defined as follows:

g(x) =

{
1 if x ≥ 0
0 otherwise

(2)

In Equation 1, wik denotes the strength of the connection from the ith input to the kth output; if wik > 0,
the connection is excitatory, if wik < 0, the connection is inhibitory, and if wik = 0, there is no connection
at all.

1



Figure 2: McCulloch and Pitts’ ANNs.

The parameter θk is the threshold value. This parameter can be absorbed into the summation by assuming
an additional input whose value is fixed at either −1 or +1. In the former case, this yields θk = w0k, whereas
in the latter, this yields θk = −w0k. Now

zk = g

(
n∑

i=0

wikxi

)
(3)

NB: We often write zk = g(hk), where

hk =

n∑
i=0

wikxi = w⃗k · x⃗ (4)

In this lecture, we study neural units that generalize the simple binary threshold unit by (i) allowing for
discrete-valued or continuous-valued inputs and outputs, and (ii) considering additional forms of the transfer
function, specifically the sign, identity, and sigmoidal functions.

2 Perceptron Rule

Perceptrons are feed-forward, layered networks. Feed-forward implies that such networks form directed
acyclic graphs (DAGs). An N -layered network has N layers of connections; specifically, such a network has
a single input layer, and N additional layers of nodes, where the final layer is called the output layer, and
the N − 1 internal layers are called hidden layers. There are N sets of weights in an N -layered perceptron.
An l-layered perceptron is depicted in Figure 3.

The simple perceptron has no hidden layers; it is a 1-layer network with only an output layer. We study
a model of a simple perceptron that is composed of threshold units based on the sign function. This transfer
function implies binary outputs: i.e., classification. As there is no dependence among the outputs in a simple
perceptron, it suffices to consider them one at a time; notationally, we drop the dependence on k of output
z, weights wi, and weighted sum h. Now

g(h) = sgn(h) (5)

i.e.,

g(h) =

{
+1 if h ≥ 0
−1 otherwise

(6)

Given data set D consisting of examples of the form ⟨x⃗, y⟩, with x⃗ ∈ Rn and y ∈ {+1,−1}, the perceptron
rule updates weight wi as follows:

∆wi = α(y − z)xi (7)

2



Figure 3: Perceptron.

Perceptron(NN,D, ϵ, α)
Inputs D = (D1, D2) data set

ϵ convergence condition
α decaying learning rate

Output function approximation
Initialize weights wi randomly

while (∆error(D2) > ϵ) do

1. for all training examples ⟨x⃗, y⟩ ∈ D1

(a) z = sgn(w⃗ · x⃗)
(b) if y = z, skip

(c) else for all weights wi

i. ∆wi = α(y − z)xi

ii. wi ← wi +∆wi

2. compute ∆error(D2)

return weights wi

Table 1: Perceptron Rule.

given learning rate α.
The idea that underlies the perceptron learning rule is as follows: if the output of the perceptron is

correct, continue; if the output of the perceptron is z = −1 but the target output is y = +1, increase the
weights on all positive inputs, and decrease the weights on all negative inputs; on the other hand, if the
output of the perceptron isz = +1 but target output is y = −1, decrease the weights on all positive inputs,
and increase the weights on all negative inputs.

Let us argue that the prescribed update rule achieves its intended purpose. Assume input xi > 0. If
y = +1 but z = −1, then y− z = 2 is positive, so that ∆wi > 0; and if y = −1 but z = +1, then y− z = −2
is negative, so that ∆wi < 0. On the other hand, assume input xi < 0. If y = +1 and z = −1, then again
y − z = 2 is positive, so that ∆wi < 0; and if y = −1 and z = +1, again y − z = −2 is negative, so that
∆wi > 0. Finally, if xi = 0, then ∆wi = 0.

3



Theorem [Minsky and Papert, 1969] The perceptron rule converges to weights that correctly classify all
training examples, provided the given data set can be separated by a linear function.

According to this theorem, the perceptron rule is limited to learning linearly separable functions. The set
of vectors {x⃗ | w⃗ · x⃗ = 0} determines a hyperplane, a generalization of a line to multiple dimensions. Recall
that g(h) = +1 iff h ≥ 0 iff w⃗ · x⃗ ≥ 0. In other words, the network output is positive for all x⃗ that lie on the
non-negative side of the hyperplane; and negative, otherwise. A function is said to be linearly separable if it
can be separated in this way by a hyperplane.

The Boolean function and is linearly separable, and can be represented by a simple perceptron with
2 primary inputs x1 and x2 with weights w1 = w2 = 1, and an additional input x0 = −1 with weight
w0 = 1.5, for example. Similarly, the function or is linearly separable. (Exercise Represent or as a
simple perceptron.) The function xor, however, is not linearly separable, and hence cannot be represented
by a simple perceptron. This realization stagnated neural network research for about a decade in the 1970s
(although it was known that XOR can be represented by a multi-layer perceptron). We now proceed to
consider alternative, more expressive, neural network models.

3 Gradient Descent

In this section, we study a simple perceptron composed of linear units, which learns via gradient descent.
Linear units output real or discrete values, rather than simply binary values, implying that such networks
are capable of general function approximation including “linear” regression. The transfer function is taken
to be linear; indeed, it suffices to choose the identity function g(h) = h.

The goal of supervised learning in neural networks is to determine a weighting scheme that minimizes
the error between network output and training examples. In classification problems, the error measure is
generally taken to be the number of misclassifications. In regression, the natural measure of error is the
residual sum of squares, which we denote by E(w⃗) and define as follows:

E(w⃗) =
1

2

∑
D

(y − z)2 (8)

Given data set D consisting of examples of the form ⟨x⃗, y⟩, with x⃗ ∈ Rn and y ∈ R, regression is the
problem of finding the weight vector w⃗ that minimizes E(w⃗) in Equation 8. Despite the existence of a
closed-form solution that solves this problem, we nonetheless describe learning via gradient descent methods
for perceptrons composed of linear units in preparation for the natural extensions of this class of algorithms
to multi-layer networks.

The idea underlying gradient descent is to repeatedly modify weights by taking small steps in the direction
that produces the steepest descent in error, until some local minimum is reached. Mathematically, the
steepest ascent in error is given by the gradient ∇E(w⃗). Thus, the gradient descent update rule modifies
weights in direct proportion to the negative of the gradient.

Given E(w⃗), the gradient ∇E(w⃗) is the vector of partial derivatives, namely:

∇E(w⃗) =

(
∂E

∂w0
, . . . ,

∂E

∂wn

)
(9)

In terms of partial derivatives, the gradient descent rule for calculating ∆wi is:

∆wi = −α
∂E

∂wi
(10)

4



given learning rate α. This rule simplifies as follows:

∂E

∂wi
=

∂

∂wi

1

2

∑
D

(y − z)2

=
1

2

∑
D

∂

∂wi
(y − z)2

=
∑
D

(y − z)
∂

∂wi
(y − z)

=
∑
D

(y − z)(−xi) (11)

The final step in the above derivation follows from the fact that z = g(h) = h, and

∂h

∂wi
=

∂

∂wi

n∑
j=1

wjxj = xi. (12)

Now substituting Equation 11 back into Equation 10, we obtain:

∆wi = α
∑
D

(y − z)xi (13)

Equation 13 is the batch learning form of an update rule known under various guises, including the
∆-rule, the Widrow-Hoff rule, and the least mean squares (LMS) rule. A batch version of gradient descent
is presented in Table 2. The distinguishing feature of a batch learning algorithm is that each update to the
weights depends on all examples.

An alternative to this batch variant of gradient descent is stochastic gradient descent, which uses the
following update rule to approximate Equation 13:

∆wi = α(y − z)xi (14)

Equation 14 adjusts weights according to the gradient of the error function on each individual training
example d, namely Ed(w⃗) =

1
2 (y − z)2.

Gradient descent converges to the global minimum in simple perceptrons of linear units, since E(w⃗) in
such networks is convex. In cases in which the function E(w⃗) has multiple local minima, stochastic gradient
descent sometimes avoids being trapped by non-global minima.

4 Back-Propagation

Given that simple perceptrons are limited in their expressivity, we now turn our attention to multi-layer
networks. In particular, we consider multi-layer networks of (non-linear) sigmoidal units: i.e.,

g(h) =
1

1 + e−h
(15)

The function g(h) approximates a step function in that g(h) ∼ 0 for h ≪ 0 and g(h) ∼ 1 for h ≫ 0. In
addition, the sigmoidal has the nice properties of being continuous and differentiable,1 making it amenable
to gradient descent-like learning procedures, including back-propagation, which is an algorithm by which
multi-layer neural networks learn weights for classification and regression.

1The derivative of the sigmoidal function σ′(x) = σ(x)(1− σ(x)).

5



Batch Gradient Descent(NN,D, ϵ, α)
Inputs D = (D1, D2) data set

ϵ convergence condition
α decaying learning rate

Output function approximation
Initialize weights wi randomly

while (∆error(D2) > ϵ) do

1. for all weights wi, initialize ∆wi to 0

2. for all training examples ⟨x⃗, y⟩ ∈ D1

(a) let z = w⃗ · x⃗
(b) if y = z, skip

(c) for all weights wi, increment ∆wi by α(y − z)xi

3. for all weights wi, wi ← wi +∆wi

4. compute ∆error(D2)

return weights wi

Table 2: Batch Gradient Descent.

Stochastic Gradient Descent(NN,D, ϵ, α)
Inputs D = (D1, D2) data set

ϵ convergence condition
α decaying learning rate

Output function approximation
Initialize weights wi randomly

while (∆error(D2) > ϵ) do

1. for all training examples ⟨x⃗, y⟩ ∈ D1

(a) let z = w⃗ · x⃗
(b) if y = z, skip

(c) for all weights wi

i. ∆wi = α(y − z)xi

ii. wi ← wi +∆wi

2. compute ∆error(D2)

return weights wi

Table 3: Stochastic Gradient Descent.

6



Using sigmoidal functions, neural networks are fully representational. Although multi-layer networks of
threshold units are capable of expressing any boolean function (Exercise Why?), there is no analog of the
perceptron rule in such networks. Hence, it is necessary to rely on the back-propagation algorithm, which
depends on continuous and differentiable sigmoidal transfer functions as approximations of threshold units.
Alternatively, if the sigmoidal units comprise the hidden units, but linear units comprise the output layer,
such a multi-layer neural network is capable of learning any continuous and differentiable non-linear function.

Consider a multi-layer neural network with multiple outputs indexed by k. The error experienced by the
network on training example d is computed as follows:

Ed(w⃗) =
1

2

∑
k

(yk − zk)
2 (16)

where yk denotes the target value of output unit k and zk denotes the actual output. The back-propagation
update rule extends Equation 10 to the case of multiple layers. Let xij denote the ith input to unit j, and
let wij denote the strength of the connection between the ith input to unit j and unit j. Now

∆wij = −α
∂Ed

∂wij
(17)

This rule simplifies via the chain rule:

∂Ed

∂wij
=

∂Ed

∂hj

∂hj

∂wij

=
∂Ed

∂hj
xij

since hj =
∑

i wijxij . Letting

δj ≡
∂Ed

∂hj
(18)

yields ∆wij = −αδjxij . It remains to compute δj . This computation consists of two cases, that in which j
is an output unit and that in which it is not. Let us consider the former case.

Rewriting the definition of δj via the chain rule yields:

δj ≡
∂Ed

∂hj
=

∂Ed

∂zj

∂zj
∂hj

(19)

The second term in this equation is simply:

∂zj
∂hj

=
∂g(hj)

∂hj

= g(hj)(1− g(hj))

= zj(1− zj)

The first term in Equation 19 reduces as follows:

∂Ed

∂zj
=

∂

∂zj

1

2

∑
k

(yk − zk)
2

=
∂

∂zj

1

2
(yj − zj)

2

= (yj − zj)
∂

∂zj
(yj − zj)

= −(yj − zj)

7



Finally, δj = −zj(1 − zj)(yj − zj) and ∆wij = αzj(1 − zj)(yj − zj)xij . (Exercise Derive δj = −yj(1 −
yj)
∑

j′ wjj′δj′ where j is a hidden unit that feeds into j′.)
The back-propagation algorithm utilizes these update rules as follows:

Back Propagation(NN,D, ϵ)
Inputs D = (D1, D2) data set

ϵ convergence condition
Output function approximation
Initialize weights wij randomly

while (∆error(D2) > ϵ) do

1. for all training examples ⟨x⃗, y⟩ ∈ D1

(a) for all output units k

i. compute zk

ii. δk ← zk(1− zk)(yk − zk)

(b) for all hidden units j that feed into units j′

i. compute zj

ii. δj ← zj(1− zj)
∑

j′ wjj′δj′

(c) for all weights wij

i. ∆wij ← αδjxij

ii. wij ← wij +∆wij

2. compute ∆error(D2)

return weights wij

Table 4: Back Propagation Algorithm.

8



Problems

#1 Overfitting in neural networks often results from overtraining the weights until they grow too large. One
way to avoid this outcome is to train networks using an error function that penalizes large weights. For
example, consider the following error function Ed(w⃗), which computes the error corresponding to training
example d = (x⃗, y), as a function of network output z:

Ed(w⃗) =
1

2

[
(y − z)2 + λ

n∑
i=1

w2
i

]

Derive the stochastic gradient descent update rule that corresponds to the given error function for a simple
perceptron with a linear output unit.

#2 Consider the following data set consisting of n training examples:

{(1, y1), . . . , (1, yn)}

All examples have attribute value 1, but there are n possible output values. To train a simple perceptron
on this data set requires only one input x and one weight w. Assume such a simple perceptron with a single
linear output unit.

(a) What is the sum of squared error function E(w) over the given training set?
(b) Given E(w) as defined in part (a), derive the gradient descent update rule.
(c) The optimal value of w (i.e., that which minimizes E(w)) is simply the mean of the yi’s. What value

of α ensures convergence to the optimal w after just one update, regardless of the initial value of w?

9


	Neural Units
	Perceptron Rule
	Gradient Descent
	Back-Propagation

