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1 Introduction

Machine Learning is function approximation at its core. Can we find a function that fits our data well? In
general, we need to select what type of function we think fits our data well. What assumptions did we make
for our learning methods so far: Decision Trees, KNN, Näıve Bayes? For KNN, we made the assumption
that data points that are “close” to each other in feature space, will have the same label. Thus, data that
is not closesly related will not fit a KNN well. For decision trees, we assumed that the data could
be meaningfully split in a generalizable way. (counter-example: MNIST or image classification from pixels -
classifying individual pixels as digits in relation to an entire image with thousands of pixels will
not mean much, and won’t generalize well). For Näıve-Bayes we made the näıve assumption that our
features were conditionally independent from each other. So, we always make some model hypothesis about
our data. For a linear regression or best fit line, the assumption is that our data is a linear combination of
input features. For a polynomial regression, the output is a polynomial of the input variables. Even neural
networks and deep learning models - which are also representations of functions - are making specific
hypotheses about the structure of data.

The methods we’ve discussed so far have been very particular ML methods, as in they each have a unique
way of fitting data and making predictions. The next series of ML methods we will look at are Parametric
Learning Models. Parametric learning models use a finite set of parameters to make predictions.

The key to generating a good linear regression or polynomial model is continuous optimization.
In the past, we looked at discrete optimization (i.e. decision trees or binary classification, which
makes discrete choices).

We’re now going to take a step back and look at generalizing the process of ML with formal math. This
week will review/introduce fundamental techniques: Continuous Optimization, Linear Algebra (data comes
in a matrix, labels come in a vector, etc.), and statistics and probability distributions.

2 Continuous Optimization

For some given f : RD → R, we seek an optimal solution x∗ and associated solution value f(x∗) such that:

f(x∗) = min
x

f(x)

In general, we may have additional constraints on the values that x may take on, such as x ≥ 0, but for
most machine learning applications, our parameters will be unconstrained.

Method 1: Critical Points

Example: find the global minimum of:

f(x) = x4 − 4x3 + 8x+ 1
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You should already be familiar with one method of continuous optimization from Calculus. Namely, finding
the critical points of a function. The critical points of a function are the points of a function can be found
by finding where the derivative (or the slope of the tangent line) is 0 or undefined.

f ′(x) = 4x3 − 12x2 + 8 (1)

0 = 4x3 − 12x2 + 8 (2)

x = 1 +
√
3, 1−

√
3, 1 (3)

(4)

We can plug the critical points we found into f(x) and find that the function is minimized at f(1 +
√
3) =

−3, f(1−
√

3) = −3. We can also take the second derivative to determine if a critical point is a
local maxima (negative) or local minima (positive) - more on this later.

When the model is simple enough, we can find optimal solutions through critical points. When we can write
out a way to find the optimal value explicitly (e.g., solving 0 = 4x3 − 12x2 + 8), we call this a closed-form
solution. A closed-form solution requires solving an equation to find an optimal value. However, closed-
form solutions are not always possible when our models are particularly complicated (neural networks), our
equations are not differentiable everywhere, or require too many computational resources to solve
(e.g., require inverting a very large matrix). In such a case, we can use the next method, gradient descent.

Method 2: Gradient Descent

First, we should briefly cover what a gradient is. For a function f(x⃗) : Rn → R where x⃗ ∈ Rn, the gradient
is the vector

∇f(x⃗) =


∂f(x⃗)
∂x1

∂f(x⃗)
∂x2

...
∂f(x⃗)
∂xn



For the equation f(x⃗) = x1
2 + 2x2

4, the gradient would be ∇f(x⃗) =
[
2x1

8x2
3

]
. We got 2x1 by taking the

partial derivative of f(x⃗) with respect to x1, and 8x2
3 by taking the partial derivative with

repsect to x2. For a given point, x = 3, y = −1, the gradient vector would be

[
6
−8

]
. So, if we were

to plot (3,-1) on a graph and travel in the direction of the gradient vector, the value of our
objective function will increase.

The gradient vector points in the direction of fastest increase in value for the function. More often than
not, we are seeking to decrease our function values. If we begin moving in the opposite direction of the
gradient, we will begin to decrease our function value. Remember, derivatives and gradients provide local
information about the behavior of functions and only hold for small regions, so we’ll have to take a
small step to guarantee that the function value decreases.

Gradient descent is an iterative algorithm, much like local search from earlier in this class. We begin at some
initial solution and take small steps in the direction of improvement until we reach a solution where we can
no longer improve (i.e. a local/global minima where our derivative is 0).

Note that x is generally used to represent features in the machine learning world. So, to
represent the weights of our parametric models we instead use w⃗. Our goal is to find a good
set of weights to optimize our model. If we have n paremeters in our model, w⃗ will be an
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Algorithm 1 Gradient Descent Pseudocode

w⃗ ← initial point in param space
while convergence not reached do

for wi in wf do

wi ← wi − α ∗ ∂f
∂wi

end for
end while

n-length vector with initial weights - these can all start out at 0. The general algorithm is as
follows:

The alpha represents the learning rate - these values are generally very low - like 0.1. This changes on a
case-by-case basis.

Example: f(w1) = w1
2

α = 0.1
w1 = 2

We’d like our solutions to act like a ball rolling down a hill. If the function slopes downward, our solution
moves in the direction of steepest descent. However, this approach doesn’t always work - our ball could find
a local minima and not the global minima.

Local Minima Global Minima

3 Convex Optimization

When are we guaranteed to find an optimal solution? Intuitively, if we can roll a ball down a function and
it always funnels to a single point (like a quadratic), then we know we can always find the optimal solution.
Such functions are called convex. Formally, for all 0 ≤ λ ≤ 1 and all possible x1, x2, a convex function is a
function that satisfies:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

The left hand side corresponds to all values the function can take on in between x1 and x2. The right hand
side corresponds to the line between f(x1) and f(x2). Together, it says that the value the function takes on
in between any x1 and x2 must be less than or equal to the value of the line connecting x1 and x2
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4 Non-Convex Optimization

Not all functions we want to optimize are convex, some in fact are highly-non-convex with many possible
local minima, saddle points, and many other things that can get in the way of GD’s convergence. How can
we deal with these issues? In a very similar way to how we solved the issue in local search, with the addition
of “random actions”.

One possible solution: Add some (gaussian) noise to the gradient vector before taking a step of gradient
descent.

A better alternative: Don’t compute the full gradient vector, just compute a small portion. This method is
called Stochastic Gradient Descent and is the reason why Deep Learning is so successful.
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