
Artificial Intelligence Spring 2005

Professor Greenwald Lecture #11

Markov Decision Processes: Control1

In this lecture, we extend our discussion of Markov reward processes to Markov
decision processes (MDP). For MDPs, we pose and solve the control problem.
Specifically, we describe value iteration and policy iteration, two dynamic pro-
gramming algorithms that are used to compute an optimal policy in an MDP.

1 Definition and An Example

Recall the following:

A stochastic process is a sequence of random variables {Xt}
∞

t=0. A stochastic
process {Xt}

∞

t=0 induces a probability transition function of the form P [Xt+1 =
st+1|Xt = st, . . . , X0 = s0]: i.e., the probability that the state at future time t+1
is st+1, given that the states at past times t, . . . , 0 were st, . . . , s0, respectively.

A Markov process is a stochastic process s.t. for all t, for all s0, . . . , st, st+1,

P [Xt+1 = st+1|Xt = st, . . . , X0 = s0] = P [Xt+1 = st+1|Xt = st] (1)

Equation 1 is the Markov property, sometimes called the memoryless property;
it implies that probability transitions to future states, such as st+1, depend only
on the present state st, but are independent of the remote past, st−1, . . . , s0.

1.1 Markov Decision Processes

An agent operating in a non-deterministic environment transitions from state
to state, in general making decisions and obtaining rewards along the way, as
follows: at time t,

1. state is st

2. choose action at

3. receive reward rt

4. transition to state st+1 with probability P [st+1|st, at]

Markov decision processes (MDPs) model such agent-environment interactions.
A (discrete-time) Markov decision process is a tuple 〈S,A,R, P 〉, where time is
discrete: i.e., t ∈ T = {0, 1, . . .}, and

1Copyright c© Amy Greenwald, 2001–05

1

• S is a finite set of states (s ∈ S)

• A is a finite set of actions (a ∈ A)

• R : S ×A→ R is a reward function

• P : S ×A→ ∆(S) is a probability transition function (or matrix)
∆(S) is the set of probability distributions over S

Example The TAC Classic flight auctions (in isolation) are examples of MDPs.
Let us simplify one TAC Classic flight auction and model it as an MDP.

The state is defined in terms of the price of the flight and the time remaining
until the end of the auction. Specifically, the state space is the cross product of
the set of possible prices, say P = {150, 160, . . . , 590, 600} and the time, which
we assume varies discretely from t = 0 through time T = 30, unioned with a
designated state end. Let pt denote the price at time t.

The set of possible actions A includes buy now (B) and (re)consider later (C).
Rewards depend on the flight’s valuation. Assuming v represents this valuation,
R(pt, B) = v − pt and R(pt, C) = 0, for all pt; in addition, R(end, a) = 0, for
all actions a ∈ A. Finally, transition probabilities depend on states and actions:
for all prices p ∈ P , actions a ∈ A, and times t ∈ {0, . . . , T },

P [end|pt = p, at = B] = 1.0

P [pt+1 = p+ 10|pt = p, at = C] = 0.5

P [pt+1 = p− 10|pt = p, at = C] = 0.5

P [end|end, at = a] = 1.0

P [end|pT = p, aT = a] = 1.0

At state pt, what is the optimal action?

2 State Values

A policy2 is a map from states to actions: i.e., π : S → A. By Bellman’s
theorem, the state value V π(s) at state s under policy π is the sum of the
immediate reward obtained in state s and the discounted sum of the rewards
obtained by following policy π thereafter:

V π(s) = R(s, π(s)) + γEs′ [V
π(s′)] (2)

Policy π dominates policy π̂ (notation π ≫ π̂) iff V π(s) ≥ V π̂(s) for all states
s ∈ S. We seek an optimal policy: i.e., π∗ s.t. π∗ ≫ π, for all policies π.

2It suffices to restrict our attention to deterministic, stationary policies π, in which the
same pure (i.e., non-randomized) action is taken every time state s is visited.

2

1000

2000

3000

2001

3001

1001

3002

2002

1002 1003

2003

3003

END

B

B

B
B

B

B
B

B

B

C

C

C C

C

C C

C

C

.5

.5

.5

.5

.5
.5

.5

.5

.5

.5

1

11
1

.5

1

1

1

1

1

1
1

.5

.5

.5

.5

.5
.5 .5

1

Figure 1: TAC Classic Flight Auctions as an MDP: States are indicated by
circles. Fat arrows indicate actions; they are labeled with rewards. Skinny
arrows indicate transitions; they are labeled with probabilities.

That such a policy exists is not at all obvious. Indeed, Bellman’s celebrated
optimality equations (Equation 3) and their accompanying dynamic program
establish both the existence of an optimal value function and a corresponding
optimal policy, as well as an efficient technique for computing them:

V (s) = max
a
{R(s, a) + γEs′ [V (s′)]} (3)

As in the case of MRPs, to find a solution to this system of (|S|) equations (with
|S| unknowns), we rely on Banach’s fixed point theorem. The optimal value
function V ∗ is the unique solution to this system of equations. The optimal
policy π∗ maps state s into an optimal action, as follows:

π∗(s) ∈ argmax
a
{R(s, a) + γEs′ [V

∗(s′)]} (4)

Exercise Show that the mapping implicit in Equation 3 is a contraction on
(RS , L∞).

3

3 Action Values

The action value Qπ(s, a) associated with state s and action a is defined as the
sum of the immediate reward obtained by taking action a in state s and the
discounted sum of the rewards obtained by following policy π thereafter:

Qπ(s, a) = R(s, a) + γEs′ [V
π(s′)] (5)

Restating Bellman’s optimality equations in terms of action values yields:

Q(s, a) = R(s, a) + γEs′ [V (s′)] (6)

V (s) = max
a

Q(s, a) (7)

Simplifying,
Q(s, a) = R(s, a) + γEs′ [max

a
Q(s′, a)] (8)

As above, to find a solution to this system of (|S ×A|) equations (with |S ×A|
unknowns), we rely on Banach’s fixed point theorem. The optimal action-value
function Q∗ is the unique solution to this system of equations.

Exercise Show that the mapping implicit in Equation 8 is a contraction on
(RS , L∞).

Given Q∗, the optimal policy π∗ maps state s into an optimal action, as follows:

π∗(s) ∈ argmax
a

Q∗(s, a) (9)

While the optimal action-value function Q∗ is unique, the optimal policy π∗

need not be unique.

4 Value Iteration

The value iteration algorithm, which is based on Equation 3, updates as follows:

V (s)← max
a
{R(s, a) + γ

∑

s′

P [s′|s, a]V (s′)} (10)

Equivalently, value iteration can be described in terms of Equations 6 and 7:

Q(s, a)← R(s, a) + γ
∑

s′

P [s′|s, a]V (s′) (11)

V (s)← max
a

Q(s, a) (12)

The algorithm, which is depicted in Table 1, first computes the value of each
state for all actions, and then sets each state’s value to be the greatest value
achieved among all courses of action. The actions that yield the optimal state
values can be extracted as the optimal policy.

4

value iteration(MDP, γ, ǫ)
Inputs discount factor γ

convergence test ǫ
Output optimal state-value function V ∗

Initialize V = 0 and V ′ =∞

while maxs |V (s)− V ′(s)| > ǫ do

1. V ′ = V

2. for all s ∈ S

(a) for all a ∈ A

i. Q(s, a) = R(s, a) + γ
∑

s′
P [s′|s, a]V (s′)

(b) V (s) = maxa Q(s, a)

return V

Table 1: Value Iteration á la Gauss-Seidel.

4.1 Example: TAC Flight Auctions

The following tables depict the computation of state and action values and the
optimal policy in a TAC flight auction, assuming 3 prices, namely $100, $200,
and $300, and 4 time steps, with V = 500 and γ = 1.

Q(s, a) t = 0 t = 1 t = 2 t = 3

B C B C B C B C
300 200 300 200 275 200 250 200 0
200 300 337.5 300 325 300 300 300 0
100 400 362.5 400 350 400 350 400 0

V (s) t = 0 t = 1 t = 2 t = 3

300 300 275 250 200
200 337.5 325 300 300
100 400 400 400 400

π(s) t = 0 t = 1 t = 2 t = 3

300 C C C B
200 C C C/B B
100 B B B B

The optimal policy prescribes that an agent buy whenever the price hits the
lower bound. Regardles of price, an agent should buy if all time has elapsed.
Otherwise, if time remains and the price is not rockbottom, it is optimal to
consider buying later, since there is some chance of seeing the price drop.

5

5 Policy Iteration

Policy iteration is a two-phase dynamic programming method for computing
optimal policies directly. The first phase, policy evaluation, computes the state
values for the current (fixed) policy via Equation 2. The second phase, policy
improvement, improves upon the current policy (whenever possible) in a greedy
fashion. Policy improvement updates based on Equations 5 and 9.

In practice, value iteration is faster than policy iteration per iteration; however,
policy iteration takes far fewer iterations to converge. One modified version of
policy iteration does not wait for the policy evaluation phase of policy iteration
to converge, and instead produces approximations of V π. This modification
leads to substantial speedups in the runtime of policy iteration.

5.1 Policy Evaluation

Policy evaluation in Markov decision processes computes state values given some
policy exactly as state values are evaluated in Markov processes:

V π(s)← R(s, π(s)) + γ
∑

s′

P [s′|s, π(s)]V π(s′) (13)

5.2 Policy Improvement

The soundness of policy iteration follows from the policy improvement theorem:

Theorem Given policies π1 and π2, if Q
π1(s, π2(s)) ≥ Qπ1(s, π1(s)) = V π1(s)

for all states s ∈ S, then V π2(s) = Qπ2(s, π2(s)) ≥ V π1(s) for all s ∈ S.

Proof (Sketch)

V π1(s) = Qπ1(s, π1(s))

≤ Qπ1(s, π2(s))

= R(s, π2(s)) + γEs′ [V
π1(s′)]

= R(s, π2(s)) + γEs′ [Q
π1(s′, π1(s

′))]

≤ R(s, π2(s)) + γEs′ [Q
π1(s′, π2(s

′))]

= R(s, π2(s)) + γEs′ [R(s′, π2(s
′)) + γEs′′ [V

π1(s′′)]]

= R(s, π2(s)) + γEs′ [R(s′, π2(s
′))] + γ2 [Es′′ [V

π1(s′′)]] = · · · = V π2(s)

The policy improvement steps in the policy iteration algorithm are as follows:

Qπ(s, a)← R(s, a) + γ
∑

s′

P [s′|s, a]V π(s′) (14)

π(s) ∈ argmax
a

Q(s, a) (15)

6

policy iteration(MDP, γ, ǫ)
Inputs discount factor γ

convergence test ǫ
Output optimal policy π∗

Initialize π 6= π′

while π 6= π′
do

1. π′ = π

2. V π = policy evaluation(MDP, π, γ, ǫ)

3. π = policy improvement(MDP, V π, γ)

return π

policy evaluation(MDP, π, γ, ǫ)
Inputs policy π

discount factor γ
convergence test ǫ

Output state-value function V π

Initialize V = 0 and V ′ =∞

while maxs |V (s)− V ′(s)| > ǫ do

1. V ′ = V

2. for all s ∈ S

(a) V (s) = R(s, π(s)) + γ
∑

s′
P [s′|s, π(s)]V (s′)

return V

policy improvement(MDP, V, γ)
Inputs value function V

discount factor γ
Output improved policy π

for all s ∈ S

1. for all a ∈ A

(a) Q(s, a) = R(s, a) + γ
∑

s′
P [s′|s, a]V (s′)

2. π(s) ∈ argmaxa Q(s, a)

return π

Table 2: Policy Iteration.

7

5.3 Example: TAC Flight Auctions

The following tables depict the iterative computation of policies, state, and
action values in one TAC flight auction. The flight’s valuation is 500.

Initialization

π t = 0 t = 1 t = 2 t = 3

300 B B B B
200 B B B B
100 B B B B

Iteration 0

V π t = 0 t = 1 t = 2 t = 3

300 200 200 200 200
200 300 300 300 300
100 400 400 400 400

Qπ(s, a) t = 0 t = 1 t = 2 t = 3

B C B C B C B C
300 200 250 200 250 200 250 200 0
200 300 300 300 300 300 300 300 0
100 400 350 400 350 400 350 400 0

π t = 0 t = 1 t = 2 t = 3

300 C C C B
200 C/B C/B C/B B
100 B B B B

Iteration 1

V π t = 0 t = 1 t = 2 t = 3

300 287.5 275 250 200
200 300 300 300 300
100 400 400 400 400

Qπ(s, a) t = 0 t = 1 t = 2 t = 3

B C B C B C B C
300 200 287.5 200 275 200 250 200 0
200 300 337.5 300 325 300 300 300 0
100 400 350 400 350 400 350 400 0

8

π t = 0 t = 1 t = 2 t = 3

300 C C C B
200 C C C/B B
100 B B B B

Iteration 2

V π t = 0 t = 1 t = 2 t = 3

300 300 275 250 200
200 337.5 325 300 300
100 400 400 400 400

Qπ(s, a) t = 0 t = 1 t = 2 t = 3

B C B C B C B C
300 200 300 200 275 200 250 200 0
200 300 337.5 300 325 300 300 300 0
100 400 362.5 400 350 400 350 400 0

π t = 0 t = 1 t = 2 t = 3

300 C C C B
200 C C C/B B
100 B B B B

As the new policy does not differ from the old, policy iteration has converged.
Note that the current values of V π represent the values of the optimal policy.

Problems

#1 Consider the following controlled version of Gambler’s Ruin in which the
gambler places bets on the outcome of a biased coin flip. Assume the gambler’s
worth is between 0 and N (i.e., S = {0, 1, . . . , N} ∪ {end}). At each state s,
the gambler stakes some amount n in the range A = {1, . . . ,min{s,N − s}}.
The coin turns up heads with probability p and tails with probability 1 − p.
If the coin turns up heads, the gambler wins the amount he stakes (i.e., he
transitions to state s + n); otherwise, the gambler loses the amount he stakes
(i.e., he transitions to state s−n). A reward of 1 is received upon transitioning
to state N ; all other rewards are 0. The gambler transitions from states 0 and N
to the absorbing state end, deterministically. The constraints on the gambler’s
range of actions ensure that (i) he stakes at least $1 but no more than his worth;
(ii) he stakes no more than N − s, preventing his worth from ever exceeding N .

9

(a) Draw the corresponding Markov decision process, assuming the gambler’s
worth is limited to $5 (i.e., N = 5).

(b) What is the optimal policy if p < 0.5, N = 100, and γ = 1. Why? (Solve
this problem by implementing value iteration or policy iteration.)

(c) What is the optimal policy if p > 0.5, N = 100, and γ = 1. Why?

#2 The goal of this question is to extend the minimax algorithm to games of
chance, like backgammon and monopoly.

(a) Formally define games of chance by extending the definition of game trees.

(b) Extend the minimax algorithm to take as input a game of chance.

#3 The goal of this question is to extend value and policy iteration to games of
chance, like backgammon and monopoly.

(a) Formally define games of chance by extending the definition of MDPs.

(b) Extend the value iteration algorithm to take as input a game of chance.

(c) Extend the policy iteration algorithm to take as input a game of chance.

#4 “Pig” is a two-player children’s dice game. Each player starts with a total
score of zero, which is increased on each turn by dice rolling. The first to reach
50 (or more) wins. On his turn, a player accumulates a subtotal by repeatedly
rolling a 6-sided die. If ever he rolls a 1, however, he loses the subtotal and
only 1 is added to his running total. Thus, before each roll, each player decides
between two actions: add his current subtotal to his running total and pass the
turn to the other player; or continue rolling, risking an unlucky 1.

(a) Formulate ”Pig” as a game of chance.

(b) Suppose Bob plays the following fixed strategy: roll exactly once, add the
value on the die to his total, and pass the turn back to his opponent, Alice.
Solve for Alice’s optimal policy against Bob. What is her probability of winning
assuming she goes first and the game is played until 10, 20, or 50?

(c) Now suppose Bob wises up and plays the minimax strategy. If Alice also
plays optimally (i.e., minimax), what is her probability of winning assuming she
goes first and the game is played until 10, 50, or 100?

10

