
Foundations of AI Fall 2024

Professors Greenwald and Ewing Machine Learning

Markov Decision Processes (Draft)

Our aim in this series of lectures is to extend our suite of heuristic search and optimization algorithms to
the case where transitions to successor states are stochastic rather than deterministic: i.e., to problems
characterized as sequential decision making under uncertainty. For example, we might be interested in
planning an optimal route to work, or optimizing our blackjack strategy, or maximizing the returns on a
portfolio of investments in the stock market. All three of these examples involve stochasticity, as traffic,
cards dealt, and stock prices are all unpredictable; but stochastic models of traffic and stock prices can be
built from data, while probabilities over cards dealt can be deduced via combinatorics.

In these lectures, we introduce Markov reward processes (MRPs) and Markov decision processes
(MDPs) as modeling tools in the study of sequential decision making under uncertainty. These models
provide frameworks for predicting long-term rewards and computing optimal behavior in uncertain worlds.
Solutions to MRPs and MDPs may involve linear programming or dynamic programming methods (e.g.,
value iteration and policy iteration) when the stochastic model is known and the state and decision spaces
are sufficiently small; otherwise, they can be solved using Monte Carlo simulations or reinforcement learning
(e.g., TD-learning, Q-learning, and SARSA).

Our discussion of Markov processes is divided into two parts: the first part is concerned with computing
state values V in Markov reward (or decision) processes, and the second with computing action values Q in
Markov decision processes. This division coincides with two related problems, namely:

1. (passive) prediction, or policy evaluation: compute the state-value function V π, given policy π

2. (active) control: find an optimal policy π∗, by computing the optimal action-value function Q∗

1 Definitions and An Example

A stochastic process is a sequence of random variables {Xt}∞t=0. A stochastic process {Xt}∞t=0 induces a
probability transition function P [Xt+1 = st+1 | Xt = st, . . . , X0 = s0]: i.e., the probability that the state at
future time t+ 1 is st+1, given that the states at past times t, . . . , 0 were st, . . . , s0, respectively.

A Markov process is a stochastic process s.t. for all t, for all s0, . . . , st, st+1,

P [Xt+1 = st+1 | Xt = st, . . . , X0 = s0] = P [Xt+1 = st+1 | Xt = st] (1)

Equation 1 is the Markov property, sometimes called the memoryless property. It states that the future
is independent of the past, given the present. Mathematically, probability transitions to future states, such
as st+1, are conditionally independent of the past, st−1, . . . , s0, given the present state st.

A time-homogeneous Markov process is one where the probability of transitioning from one state to
another in n steps is always the same, regardless of absolute time: for all times t, t′ and states s, s′,

P [Xt+n = s′ | Xt = s] = P [Xt′+n = s′ | Xt′ = s] (2)

A time-homogeneous Markov process over a discrete state space is called a Markov chain. Markov chains
can be represented as row- (or column-)stochastic probability transition matrices.

1

1.1 Markov Reward Processes

An agent operating in a stochastic environment transitions from state to state, in general obtaining rewards
along the way, as follows: at time t,

1. state is st

2. receive reward rt

3. transition to state st+1 with probability P [st+1 | st, . . . , s0]

We model this agent’s interactions as a (discrete-time) Markov reward process, a tuple ⟨S,R, P ⟩, where
time is discrete: i.e., t ∈ T = {0, 1, . . .}, and

• S is a finite set of states

• R : S → R is a reward function

• P : S → ∆(S) is a probability transition function (or matrix)
∆(S) is the set of probability distributions over S

Implicit in this definition is the assumption that the probability transition function P is a Markov chain.

N.B. Markov reward processes can have stochastic rewards as well as stochastic transitions. Our framework
is nonetheless sufficiently general, because MRPs with stochastic rewards can be reduced to MRPs processes
with deterministic rewards by setting the deterministic rewards equal to the expected stochastic rewards.

0 1 2 3 4

END

1

2/3

1/3

2/3

1/3

2/3

1/3

1

1

Figure 1: Gambler’s Ruin: N = 4. An absorbing state s ∈ S is s.t. P [s | s] = 1. The end state is an
absorbing state in Gambler’s Ruin.

Example Gambler’s Ruin is an example of a Markov reward process. A gambler gambles until he either
wins a set amount of money, say $N , or loses all his money. At state st, his wealth increases by $1 with
probability 1/3, and it decreases by $1 with probability 2/3.

The set of states is defined by the worth of the gambler: S = {0, . . . , N,end}. The transition probabilities
are s.t. P [i + 1|i] = 1/3 and P [i − 1|i] = 2/3, for i = 1, . . . , N − 1, P [end|i] = 0, for i = 0, N , and
P [end | end] = 1. What is the probability that the gambler wins, i.e., reaches state N?

2

2 State Values

Being a stochastic process, there are many trajectories that can be realized in a Markov reward process,
with various probabilities and rewards. The expected value over the rewards of all trajectories originating
at a state s is called the state-value function V : S → R. Given a Markov reward process, such as the
Gambler’s ruin, we are interested in computing V .

We write St to represent the random variable1 denoting the state at time t: e.g., St = s, for some s ∈ S.
We then write τt = (St, St+1, . . .) to denote the random trajectory originating at state St at time t, and
Gτ

t =
∑∞

i=0 R
τ
t+i to denote the return accrued along trajectory τ : i.e., the sum of all the rewards from time

t on, where Rτ
t+i = R(St+i), for all i ∈ N. The expected value of Gτ

t is then V (s), where the expectation is
taken over all trajectories τ that initiate at s: i.e., V (s) = Eτ [G

τ
t | St = s].

In this section, we present a proof sketch of Bellman’s seminal theorem, known as Bellman’s equation,
namely the state value V (st) can be decomposed recursively into the sum of the immediate reward obtained
at time t and the discounted sum of the expected future rewards obtained thereafter (i.e., V (St+1)).

2.1 But First a Word on Return

Given trajectory τ = (St, St+1, St+2, . . .), the return Gτ
t is a function of the current reward Rt and the

stream of future rewards Rt+1, Rt+2, In the case of a finite horizon, say of length T <∞, return can be
computed simply as the sum of current and future rewards: i.e.,

Gτ
t = Rt +Rt+1 +Rt+2 + . . .+RT =

T−t∑
i=0

Rt+i (3)

In the case of infinite horizons, however, the sum of future rewards is potentially infinite. If all trajectories
are proper (a trajectory is called a proper trajectory iff it eventually transitions to a zero-reward, absorbing
state with positive probability), return can be computed simply as the sum of current and future rewards,
as in Equation 3. Otherwise, return is computed as the sum of current rewards and the discounted sum of
future rewards: i.e., assuming discount factor 0 ≤ γ < 1,

Gτ
t = Rt + γRt+1 + γ2Rt+2 + . . . =

∞∑
i=0

γiRt+i (4)

If rewards are assumed to be bounded, return as defined by Equation 4 is finite. (Exercise) But even
in the case of finite horizons or proper trajectories, Gτ

t is often computed with discounting, because of the
following economic intuition.

The motivation for discounting future rewards can be simply stated: a dollar today is worth more than a
dollar tomorrow. For example, given an interest rate of x% per annum, d dollars today are worth (1 + x)d
dollars 365 days from now. Thus, d dollars 365 days from now are worth only d/(1 + x) dollars today. The
discount factor γ is inversely related to the interest rate: γ = 1/(1 + x).

Intuitively, γ determines the relative worth of immediate vs. future rewards. As γ → 0, immediate rewards
are deemed more and more relevant; agents that attempt to maximize return in these circumstances are
called myopic. As γ → 1, future rewards are weighted more and more heavily; agents that aim to maximize
discounted rewards based on high values of γ exhibit foresight.

1As usual, we use capital letters to denote random variables, and lower case letters to denote their realized values.

3

2.2 Bellman’s Theorem

We now derive Bellman’s theorem for Markov reward processes: the state value V (st) at state st is the
sum of the immediate reward obtained at time t and the discounted sum of the expected rewards obtained
thereafter: i.e., for 0 ≤ γ < 1,

V (st) = rt + γEst+1
[V (st+1)] (5)

The crux of the proof of this theorem is roughly as follows: for all states s ∈ S,

V (s) = Eτ [G
τ
t | St = s]

=

∫
τ

P [τ | St = s]Gτ
t

= rt + γ

∫
τ

P [τ | St = s]Gτ
t+1

= rt + γ
∑
s′∈S

P [St+1 = s′ | St = s]

(∫
τ ′
P [τ ′ | St+1 = s′, St = s]Gτ ′

t+1

)
= rt + γ

∑
s′∈S

P [St+1 = s′ | St = s]

(∫
τ ′
P [τ ′ | St+1 = s′]Gτ ′

t+1

)
= rt + γ

∑
s′∈S

P [St+1 = s′ | St = s]Eτ ′

[
Gτ ′

t+1 | St+1 = s′
]

= rt + γ
∑
s′∈S

P [St+1 = s′ | St = s]V (s′)

= rt + γEs′ [V (s′)]

The first equality follows from the definition of V ; the second, from the meaning of an expectation; the third,
from the fact that rt is not a random quantity; the fourth, from the definition of joint probability; the fifth,
from the Markov property; the sixth, from the meaning of an expectation (again); the seventh, from the
definition of V (again); and the last line is simply an abbreviation.

2.3 Bellman’s Equations

Bellman’s theorem gives rise to the following system of |S| equations with |S| unknowns, known as Bellman’s
equations: for all states s ∈ S,

V (s) = r(s) + γ
∑
s′

P [s′ | s]V (s′) (6)

Assuming a finite state state, with n states, we can rewrite this equation in matrix notation as follows: for
value and reward vectors v, r ∈ Rn and n× n transition probability matrix P ,

v = r + γPv (7)

v − γPv = r (8)

Iv − γPv = r (9)

(I − γP)v = r (10)

v = (I − γP)−1r (11)

Therefore, Bellman’s equation can be solved by matrix inversion. But just like in linear regression, where
we tend to prefer least-squares solutions to computing the closed-form solution directly, an iterative method

4

is the norm for solving Bellman’s equations. These iterative methods are preferable when the system of
equations is large, making matrix inversion expensive, and because iterative methods are more robust to
numerical approximation errors.

To solve Bellman’s equations, we rely on Banach’s fixed point theorem, also called the contraction mapping
theorem. Given a metric space2 (X, d), a mapping f : X → X is called a contraction iff there exists some
0 ≤ k < 1 s.t. d(f(x), f(y)) ≤ kd(x, y), for all x, y ∈ X.

Theorem [Banach] Given a complete3 metric space (X, d) and a contraction mapping f : X → X,
(i) there exists a unique x∗ ∈ X s.t. f(x∗) = x∗; and (ii) for arbitrary x0 ∈ X, the sequence {xn} defined by
xn+1 = f(xn) = fn+1(x0) converges to x∗.

Define the mapping f : RS → RS as follows:

(f(x))(s) = r(s) + γ
∑
s′

P [s′ | s]x(s′) (12)

Theorem The mapping f is a contraction on (RS , L∞).

Proof Let the metric d be the L∞, or max, norm: i.e., ||x − y|| = maxi |xi − yi|. For all x, y ∈ X, and for
arbitrary state s ∈ S,

|(f(x))(s)− (f(y))(s)|

=

∣∣∣∣∣r(s) + γ
∑
s′

P [s′ | s]x(s′)−

(
r(s) + γ

∑
s′

P [s′ | s]y(s′)

)∣∣∣∣∣
= γ

∑
s′

P [s′ | s] |x(s′)− y(s′)|

≤ γ
∑
s′

P [s′ | s] max
s′′
|x(s′′)− y(s′′)|

= γ
∑
s′

P [s′ | s]||x− y||

= γ||x− y||

It follows that |(f(x))(s)−(f(y))(s)| ≤ γ||x−y||, for all states s. Therefore, ||f(x)−f(y)|| = maxs |(f(x))(s)−
(f(y))(s)| ≤ γ||x− y||.

Corollary Bellman’s system of equations (Equation 6) indeed has a fixed point solution, and the iterative
application of f converges to this solution.

3 Policy Evaluation

Policy evaluation is a dynamic programming method that computes state values via iterative updates based
on Bellman’s equations:

V (s)← r(s) + γ
∑
s′

P [s′ | s]V (s′) (13)

Gauss-Seidel’s version of this algorithm incorporates in-place updating: i.e., updating with V , as shown in
Table 2, rather than V ′, as shown in Table 1.

2A metric space (X, d) is a set X together with a distance function d : X × X → R that satisfies: (i) d(x, x) = 0, for all
x ∈ X; (ii) d(x, y) = d(y, x) for all x, y ∈ X; and (iii) the triangle inequality—d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

3An example of a complete metric space is R.

5

policy evaluation(MRP, γ, ϵ)
Inputs discount factor γ

convergence test ϵ
Output state-value function V
Initialize V = 0 and V ′ =∞

while maxs |V (s)− V ′(s)| > ϵ do

1. V ′ = V

2. for all s ∈ S

(a) V (s) = r(s) + γ
∑

s′ P [s′ | s]V ′(s′)

return V

Table 1: Policy Evaluation.

gauss seidel(MRP, γ, ϵ)
Inputs discount factor γ

convergence test ϵ
Output state-value function V
Initialize V = 0 and V ′ =∞

while maxs |V (s)− V ′(s)| > ϵ do

1. V ′ = V

2. for all s ∈ S

(a) V (s) = r(s) + γ
∑

s′ P [s′ | s]V (s′)

return V

Table 2: Gauss-Seidel.

3.1 Example: Gambler’s Ruin

In the Gambler’s Ruin problem, we are interested in computing the probability that the gambler is ruined
(or not). To compute this probability, we model the problem as a Markov reward process with rewards 0
everywhere except at state N , where the reward is 1. In this way, the value of a state s, which represents
the expected value of all returns on trajectories emanating from s, is the total probability of all trajectories
leading to a win times a reward of 1, plus the total probability of all trajectories leading to a lose times a
reward of 0, which equals the total probability of all trajectories leading to a 1.] The value function of this
MRP therefore represents the probability that the gambler is not ruined.

Assuming γ = 1, these values can be computed via policy evaluation as follows:

6

V 0 1 2 3 4 end

0 0 0 0 0 0 0

1 0 0 0 0 1 0

2 0 0 0 1
3 1 0

3 0 0 1
9

1
3 1 0

4 0 1
27

1
9

11
27 1 0

5 0 1
27

13
81

11
27 1 0

With in-place computation á la Gauss-Seidel, working backwards from end to state 4 down to state 0, the
computation proceeds as follows:

V 0 1 2 3 4 end

0 0 0 0 0 0 0

1 0 1
27

1
9

1
3 1 0

2 0 13
243

13
81

11
27 1 0

3 0 133
2187

133
729

107
243 1 0

100 0 0.0667 0.2 0.4667 1 0

At all states 1, . . . , N − 1, the gambler is more likely to be ruined than not.

7

	Definitions and An Example
	Markov Reward Processes

	State Values
	But First a Word on Return
	Bellman's Theorem
	Bellman's Equations

	Policy Evaluation
	Example: Gambler's Ruin

