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Professors Greenwald and Ewing Search Unit

Local Search Methods for Discrete Optimization

The topic of this lecture is local search methods for discrete optimization—the problem of finding a global
optimum in very large search spaces. Optimization problems arise in many fields, and their solutions have
real-world impact. Here are a few examples:

• Facility Location Suppose a city is deciding where to build its fire stations, knowing that fire trucks
will be dispatched from these stations in emergencies. Intuitively, they should be spread out across
the city, but how can we assess what the best locations would be? First, we need to quantify how
good a set of locations actually is. Maybe we care most about average response time, e.g., how far
each building in the city is—on average—from the nearest fire station. Or perhaps we care about
minimizing the maximum response time, so that no one is ever too far away from assistance. Given
an objective function, we can evaluate the quality of different arrangements of fire stations in search
of an optimal solution. This is the facility location problem.

• Vehicle Routing Every day, delivery companies, like Fedex and UPS, are contracted to deliver a
collection of packages to a variety of locations. The vehicle routing problem is the problem of assigning
packages to trucks, and arranging routes for the truck drivers, so as to minimize the amount of time it
takes to make all the deliveries (or total fuel consumption, or distance traveled, etc.). One curious fact
is that most delivery routes now avoid making any left turns, as it was discovered that this heuristic
leads to substantial time savings.

• Antenna Design Antennae are used to broadcast information over radio waves. TV and radio
stations use antennae to broadcast their programming over “air waves.” Satellites and spacecraft
require very specific antennae with two properties: low energy usage and a strong enough signal.
NASA spent a great deal of effort optimizing the antenna design of their satellites and space craft.
They designed a local search algorithm based on of principles of biological evolution.

A discrete optimization problem is one in which the state space is discrete (e.g., the integers, paths through
a graph, etc.).1 Informally, the following features are typical of discrete optimization problems:

• combinatorial (and hence, exponential) state space

• cost (reward) function to be minimized (maximized)

• similar solutions have similar costs (“continuous” objective function)

• exhaustive, blind, and heuristic search are intractable, but reasonable solutions are satisfactory

In contrast to typical search problems (e.g., Rubik’s cube),2 the solution to a pure optimization problem,
such as facility location, does not include the path to a goal, but is only the goal itself. In particular,
every state represents a complete solution to the problem, although not necessarily an optimal one. This
observation suggests the use of iterative improvement algorithms to solve optimization problems: initialize
the algorithm at some (random) state, and iteratively perturb the current solution, updating it if any of the
tested perturbations yields an improvement.

1The opposite of discrete is continuous (e.g., real values, or real-valued vectors).
2which might be more aptly named planning problems, since their solutions involve sequences of actions, a.k.a. plans

1

https://www.jpl.nasa.gov/nmp/st5/TECHNOLOGY/antenna.html


Local search methods—the focus of this lecture—are algorithms that seek iterative improvements. The
term “local” refers to the fact that algorithms in this class only consider perturbations in a local neighborhood
of the current solution. We study: (i) hill-climbing algorithms, which greedily improve upon the current
solutio and (ii) simulated annealing, which temporarily explores changes worse than the current solution,
but ultimately only exploits improvements in the current solution.

1 Problem Definition

An optimization problem (X, f) comprises a state space X and an objective function f : X → R, in which
the goal is to identify a state x∗ that is either a (global) minimum or a maximum: i.e., it is an optimum.
Given an optimization problem, x∗ ∈ X is a minimum iff f(x∗) ≤ f(x), for all x ∈ X; similarly, x∗ ∈ X
is a maximum iff f(x∗) ≥ f(x), for all x ∈ X. This lecture is tailored toward minimization problems and
algorithms; maximization problems are handled analogously.

As the search spaces in optimization problems can be exceedingly large, one approach to solving them is to
search only locally: i.e., within the neighborhood of a given state. Given an optimization problem (X, f), it
is the job of the AI practitioner to define a neighborhood function N : X ⇒ X, which typically returns
simple perturbations of x for which f(x) can be computed efficiently. A state x∗

l ∈ X is a local minimum iff
f(x∗

l ) ≤ f(y), for all y ∈ N (x∗
l ). (And likewise, for a local maximum.)

The objective function of an optimization problem gives rise to a cost (or reward) landscape. Local search
algorithms move around this landscape seeking its lowest troughs (or highest peaks). As shown in Figure 1,
in addition to its global optima, this landscape can include local optima, from which it may be difficult to
escape, especially if many counterproductive steps are needed (i.e., downhill steps in the diagram), before
productive steps (i.e., uphill steps) are identified.

Flat regions present a further difficulty. Some flat regions may be global maxima, where exploration beyond
a local neighborhood may not be beneficial; but other flat regions, like the region labelled “shoulder” in
Figure 1, may be worth escaping from.
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Figure 1: A one-dimensional state-space landscape in a maximization problem.
This figure is adopted from Russell & Norvig.

A local search approach to optimization starts at some initial state, evaluates that state, looks around the
neighborhood of that state for local improvements, possibly accepts a local improvement, and repeats. As
these algorithms only search in local neighborhoods, they can only ever be guaranteed to find locally optima.
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Note that local search is initialized at some initial state. One common approach to finding an initial state
is—drum roll—heuristic search! In general, heuristic search can be slow. But it is also possible to run a
quick-and-dirty heuristic search, such as one guided by a greedy heuristic, without backtracking.3

Random restarts Alternatively, local search can be initialized at random. This approach can be very
useful, because then local search can be restarted multiple times (or run multiple times in parallel), from
random initial states, increasing the likelihood of eventually landing on a global optimum.

2 Traveling Salesperson Problem

Figure 2 presents an instance of the traveling salesperson problem (TSP), a classic optimization problem.
Providence, Boston, Hartford, New York, and Washington D.C., and their respective distances from one
another (as the crow flies), are depicted. A path through the graph that visits all cities exactly once and
returns to its origin is called a tour. The objective in TSP is to find a tour of minimal distance. The optimal
tour in Figure 2 is PBHWNP, for which the total distance is 795.
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Figure 2: This graph encodes an instance of TSP in which states are tours, and the objective function f is
defined as a tour’s total distance, as indicated by the weights along its edges.

Given your experience with search so far, it would be quite natural for you to propose that we tackle TSP
by formulating it as a search problem: i.e., by building up tours incrementally. In Appendix 4, we describe
two ways in which to formulate TSP as search. The difficulty with this approach is the number of tours:
starting in Providence, there are 4 possible next cities, and from there, 3 possibilities, and so on. In general,
on a complete graph of n nodes, there are n! paths from any one node to all the others and back again.4

Instead of formulating TSP as search, we will take the point of view of optimization, where states are tours,
and our job is to define a neighborhood operation based on which we can run local search.

Before proceeding, however, we remind you that local search methods must start somewhere! They require
an initial state. Heuristic search (e.g., A∗ with backtracking is too onerous for this purpose. Instead, we
suggest using greedy search (without backtracking) to generate a quick-and-dirty tour that can be used as an
initial state before embarking on a local search. For example, a greedy search might proceed by applying the
nearest-neighbor heuristic: visit the nearest city next, as long as that city has not already been visited,
until all cities have been visited, and then return home.

3Best-h heuristic search maintains a priority queue, and therefore employs backtracking.
4without repeats, i.e., without visiting the same city twice
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There are many possible neighborhood operations. One simple example is inversion: given a tour, consider
swapping the order of visiting each consecutive pair of cities on the tour (except the origin). More generally,
an operation called 2opt eliminates any two edges, say (x1, x2) and (y1, y2), and reconnects the nodes in the
opposite way, as (x1, y2) and (y1, x2). Inversion and 2opt are useful in practice because their computation
is cheap—just subtract the distances of the deleted edges and add the distances of the new edges.

How might local search behave on our sample TSP, with inversion as the neighborhood operation? Sup-
pose the initial state is PWBHNP of distance 1099. Applying inversion yields PBWHNP of distance 991,
PWHBNP of distance 1097, and PWBNHP, of distance 1106. Most likely, a local search algorithm would
accept PBWHNP, since 991 < 1099; but, it could also reasonably accept PNBHWP since 1097 < 1099.
Assume PBWHNP is accepted. Applying inversion again yields PWBHNP (the original tour), PBHWNP of
distance 795, and PBWNHP of distance 804. Now, if the tour PBHWNP is accepted, the algorithm verifies
that it encountered a local (in fact, global) minimum and halts. (See Figure 3.)
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Figure 3: Local Search in TSP.

3 Hill-Climbing

Hill-climbing is a family of local search algorithms that consider changes in the local neighborhood of a given
state and accept changes that improve upon the current solution. Best-improvement and first-improvement
are examples of hill-climbing algorithms. Other variants include GSAT and WalkSAT, which are special
purpose algorithms for solving satisfiability.5

3.1 Best-Improvement Search

The main idea behind best-improvement search is to consider all states in the local neighborhood of
the current state, and to accept one that best improves the objective function. Like all local search algo-
rithms, best-improvement search terminates at a local (but not necessarily global) minimum. Nonetheless,
its performance can be improved using random restarts.

5Coming soon, to a lecture hall near you!
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BestImprovementSearch
Inputs optimization problem (X, f,N )

random start state x
Output best state visited x
Initialize x′ ̸= x, A = {x}

while (x′ ̸= x) do

1. x′ = x, A = {x}

2. for all y ∈ N (x′)

(a) if f(y) < f(x), x = y, A = {x}
(b) else if f(y) = f(x), insert y in A

3. choose x in A

return x

Table 1: Best-Improvement Search.

3.2 First-Improvement Search

Unlike best-improvement search, first-improvement search does not consider all neighbors of the current
solution. On the contrary, it considers its neighbors at random and accepts the first one that demonstrates
an improvement. It halts if ever it loses its patience before finding an improvement. First-improvement
search is also called stochastic local search.

First(X, f,N , p, x, ϵ)
Inputs optimization problem

patience time limit p
random start state x
rate of exploration ϵ

Output best state visited x
Initialize t = 0

while (t < p) do

1. for some y ∈ N (x)

(a) if f(y) < f(x), x = y, t = 0

(b) else if f(y) = f(x) and rand[0, 1] ≤ ϵ, x = y

(c) else increment t

return x

Table 2: First-Improvement Search.

Assuming infinite patience, stochastic local search terminates at a local optimum with probability 1. But
rather than run the algorithm with too much patience, it is usually run repeatedly with random restarts.
Assuming infinite patience and an infinite number of random restarts, stochastic local search terminates at
a global optimum with probability 1.
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Random(X, f,N , p, n, ϵ)
Inputs optimization problem

patience time limit p
number of restarts n
rate of exploration ϵ

Output best state visited x∗

Initialize f(x∗) = ∞

for i = 1 to n

1. choose start state x ∈ X

2. z = First(X, f,N , p, x, ϵ)

3. if f(z) < f(x∗), x∗ = z

return x∗

Table 3: Stochastic Local Search with Random-Restarts.

4 Simulated Annealing

Simulated annealing generalizes stochastic local search. With some probability, say p, simulated annealing
accepts state changes that adversely affect the value of the objective function. In other words, in accordance
with p, it encourages exploration of harmful states; otherwise, it exploits successful states.

A probability p of exploration can be determined in several ways. One approach is simply to fix p at some
small value ϵ > 0. Another option is to let p decrease with time: p ∼ 1/t. Yet another idea is to let p decrease
as ∆(x, y) = f(y)− f(x) increases, where x is the current solution and y ∈ N (x).

Updating in the spirit of this third idea can be achieved as follows: if ∆(x, y) < 0 (i.e., y is an improvement),
then let p = 1: i.e., exploit; if ∆(x, y) ≥ 0 (i.e., y is not an improvement), then let p = e−∆(x,y). In this way,
small increases in the value of the objective function imply large values of p (exploration is likely; exploitation
is not), whereas large increases in the value of the objective function imply small values of p (exploitation is
likely; exploration is not). (For this definition of p, all ties are broken in favor of y, since e0 = 1.)

Simulated annealing is a local search algorithm based on a combination of ideas: (i) exploration decreases
with time and (ii) exploration is more likely if it makes things only slightly worse, and less likely if it makes
things significantly worse. Specifically, simulated annealing relies on the following exploration probabilities,
given by the Boltzmann distribution: for τ > 0,

p =

{
e−∆(x,y)/τ if ∆(x, y) ≥ 0
1 otherwise

Simulated annealing derives its name from the interpretation of τ as a temperature, which through slow
cooling strengthens metal during its production. Initially, when τ ≫ 0 and p is high, simulated annealing
behaves like a random walk: exploration is more likely than exploitation. Later in the search, when τ → 0 and
p is low, simulated annealing reduces to stochastic local search: exploitation is more likely than exploration.
(See Figure 4.)
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SA(X, f,N , T, x, C)
Inputs optimization problem

number of iterations T
random start state x
cooling schedule C

Output best state visited x∗

Initialize x∗ = x, τ

for t = 1 to T

1. for some y ∈ N (x)

(a) compute ∆(x, y) = f(y)− f(x)

(b) if ∆(x, y) < 0, let p = 1

(c) else p = e−∆(x,y)/τ

(d) if rand[0, 1] ≤ p, x = y

i. if f(x) < f(x∗), x∗ = x

2. decay τ according to schedule C

return x∗

Table 4: Simulated Annealing.
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A TSP as Search

Given a set of cities Y of cardinality m, and given the corresponding distances between cities (d(x, y),
for all x, y ∈ Y ), we formulate TSP as a search problem in two ways. In the first formulation, states
are Hamiltonian paths: paths that do not visit any city twice. In the second formulation, states are
Hamiltonian circuits: cycles that do not visit any city twice.

A.1 Hamiltonian Paths

Let the set of states X consists of all Hamiltonian paths: i.e., paths that do not visit any city twice. Formally,

X = {(x1, . . . , xn) | n = 1, . . . , N + 1, xi ∈ Y for all 1 ≤ i ≤ n,

xi ̸= xj for all 1 ≤ i ̸= j ≤ n, unless i = 1, j = m+ 1}

The set of goal states includes all states of length N + 1. The set of start states includes all states of length
1. The transition function between states is defined as follows: at state (x1, . . . , xn),

T (x1, . . . , xn) = {(x1, . . . , xn, xn+1) | xn+1 ̸= xi ∈ Y, for all 1 ≤ i ≤ n, }
unless i = 1, n = m

with cost function c((x1, . . . , xn), (x1, . . . , xn, xn+1)) = d(xn, xn+1). Figure 4 depicts the first three levels of
the search space in this formulation for the traveling salesperson problem depicted in Figure 2.
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Figure 4: Search in TSP: States are Hamiltonian Paths.

One simple heuristic to solve TSP in this formulation is nearest-neighbor. Beginning at city x, the
salesperson visits city y s.t. d(x, y) is minimal; from city y, she visits city z s.t. d(y, z) is minimal, so long as
doing so does not create a cycle of length less than m, in which case she visits one of the next closest cities
instead; and so on. Applying this heuristic to the search problem in Figure 4 generates the suboptimal path
PBHNWP of distance 796.
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A.2 Hamiltonian Circuits

Let the set of states X consists of all Hamiltonian circuits: i.e., cycles that do not visit any city twice—a.k.a
tours. Formally,

X = {(x, y1, . . . , yn, x) | n = 1, . . . , N − 1,

x ̸= yi ̸= yj ∈ Y for all 1 ≤ i ̸= j ≤ n}

In this case, the transition function between states is defined as follows: at state (x, y1, . . . , yi, yi+1, . . . , yn, x),

T (x, y1, . . . , yn, x) = {(x, y1, . . . , yi, y, yi+1 . . . , yn, x) | y ̸= yi ̸= x ∈ Y }

at cost d(yi, y) + d(y, yi+1)− d(yi, yi+1). The set of goal states includes all states of length N + 1. The set
of start states includes all states of length 2.
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Figure 5: Search in TSP: States are Hamiltonian Circuits.

A greedy heuristic for solving TSP in this problem formulation is simply: insert a city into the tour that
causes the smallest increase in the length of the tour. This heuristic finds an optimal tour in our example.
(See Figure 5.)
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