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Linear Regression, Continued

1 Polynomial Regression

It is straightforward to incorporate a y intercept into our matrix notation. The trick to doing so is to append
an extra dimension to the parameter vector w ∈ Rd and to likewise append an extra feature/column to X,
whose value is always 1, so that wd+1 represents the intercept:

Xw =


x11 x12 . . . x1d 1
x21 x22 . . . x2d 1
...

... . . .
...

xn1 xn2 . . . xnd 1




w1

...
wd

wd+1

 =


w1x11 + w2x12 + . . .+ wdx1d + wd+1

w2x21 + w2x12 + . . .+ wdx1d + wd+1

...
w1xn1 + w2xn2 + . . .+ wdxnd + wd+1


In a simple regression of y on X =

[
x
]
, i.e., only one feature, the aforementioned trick is akin to appending

x0 = 1 to X, resulting in
[
x 1

]
, or

[
1 x

]
. More generally, it is equally possible to append x raised to any

other power p to X as well: e.g.,
[
1 x x2 x3 . . . xp

]
. Therefore, polynomial regression reduces

to linear regression! In theory at least; in practice, the set of possible combinations of powers of features is
massive. Assuming just two features, say x1 and x2 and p = 3 yields the following (long) list of possibilities:1

1 x1 x2
1 x3

1 x2 x2
2 x3

2 x1x2 x2
1x2 x1x

2
2 x2

1x
2
2 x3

1x2 x1x
3
2 x3

1x
2
2 x2

1x
3
2 x3

1x
3
2

Feature selection is an important and difficult problem in machine learning. The deep learning revolution
can in large part be attributed to its success at automatically identifying pertinent features.

2 Regularized Regression

Linear regression is a machine learning model with a strong bias, namely the decision to fit a line (as opposed
to a curve) to data. Even with this inherent bias, linear regression models can have high variance. Another
way to limit variance is to limit the range of the model parameters w ∈ Rd.

The p-norm of a vector w ∈ Rd, denoted ∥w∥p, for some p ≥ 1, is a way to gauge w’s size.2

The most popular norm is the 2-norm, also called the Euclidean norm:

∥w∥2 =

√√√√ d∑
i=1

w2
i

1I probably missed some!
2A norm is a function from Rd → R that satisfies the following three properties:

1. ∥x∥ > 0, for all x ̸= 0

2. ∥αx∥ = α∥x∥, for all α ∈ R and x ∈ Rd

3. ∥x+ y∥ ≤ ∥x∥+ ∥y∥, for all x,y ∈ Rd

The final property is called the triangle inequality, because the sum of the lengths of two sides of a triangle is at least that
of the third.

1



Figure 1: The feasible sets when the p-norm of a vector in Rd is constrained to be less than or equal to 1,
for p ∈ {1, 2, 1000,∞}. Image source.

Other common choices include the 1-norm:

∥w∥1 =

d∑
i=1

|wi|

and the ∞-norm:
∥w∥∞ = max

i∈{1,...,d}
|wi|

Nomenclature An optimization problem with decision variables z ∈ Rd is called constrained when
its solution must lie lie in some smaller subset, say C, of Rd. This smaller subset is called the feasible
set. (In an unconstrained optimization problem, the solution can be found anywhere in Rd.) Figure 1
depicts the feasible sets when the p-norm of a vector in Rd is constrained to be less than or equal to 1, for
p ∈ {1, 2, 1000,∞}.

Recall the ordinary least squares (OLS) objective:

loss(w) = (y −Xw)T (y −Xw) =

n∑
i=1

(y −Xw)2i

In other words,
loss(w) = ∥y −Xw∥22

Observe that OLS is an unconstrained optimization problem, asw can take on any value in Rd. Regularized
regression is a constrained optimization problem, with the same objective, but a limited domain for w.

Ridge regression uses the 2-norm as a regularizer: for some β > 0,

min
w∈Rd

∥y −Xw∥22 (1)

subject to ∥w∥2 ≤ β (2)
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https://mathweb.ucsd.edu/~dumitriu/chapter2p1.pdf


LASSO uses the 1-norm: for some β > 0,

min
w∈Rd

∥y −Xw∥22 (3)

subject to ∥w∥1 ≤ β (4)

The choice of β is a choice of how much bias to include in the model.

Like OLS, ridge regression has a closed-form solution. This solution can be found by first reformulating the
ridge regression constrained optimization problem in terms of its Lagrangian,3 and then following the same
steps as last time to solve OLS. The closed-form solution of ridge regression generalizes that of OLS:

w = (XTX + λI)−1XTy

On the other hand, LASSO does not have a closed-form solution. The difficulty arises from the fact that
the absolute value function is not differentiable at zero. As a result, LASSO is generally solved using a
generalization of gradient descent called subgradient descent, as the subgradient exists everywhere. The
subgradient, however, is not unique, so this algorithm is usually slower to converge than gradient descent.

While both ridge regression and LASSO impose bias, and thereby limit variance, their behavior is notably
different. Take, for example, the vectors (1, 0) and (1/

√
2, 1/

√
2). While ∥(1, 0)∥2 = ∥(1/√2, 1/

√
2)∥2 = 1,

only (1, 0) has 1-norm 1; ∥(1/√2, 1/
√
2)∥1 =

√
2. As a result, LASSO has a tendency to select features, by

completing zeroing out less important features—not just assigning them small coefficients.

Figure 2 is a depiction of ridge regression and LASSO. The OLS minimum is the dark black dot. As this
point lies outside the feasible set, the optimal point for each problem lies on the boundary of the feasible
set. But only for LASSO does it fall on a corner; the coefficient in the y direction is completely zeroed out.

Figure 2: Image source.

3TODO !!!
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