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Linear Regression (Draft)

An ice cream shop recorded its sales on various days of the year to try to determine if there is a relationship
between temperature and sales. The data points are plotted below, in blue. The red line is an example of a
simple linear regression obtained by minimizing the squared errors from the points to the line.
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Figure 1: Temperature vs. Ice Cream Sales with Best Fit Line

1 Ordinary Least-Squares

Imagine we are given a data set D =
{
(xi, yi) | xi ∈ Rd, yi ∈ R, i ∈ {1, . . . , n}

}
of size n, where each data

point xi is d-dimensional, to which we hope to fit a linear model. When d = 1, a linear model is a model in
which each yi is approximated by mxi + b. Here, as in high school, m is the slope, while b is the y intercept.

In a regression model, Y is called the response—or dependent—variable, while the features are called the
explanatory variables, or the predictors, and we are said to be “regressing Y on X.”

The feature values can be encoded in a matrix X:

X =


x1

x2

...
xn

 =


x11 x12 . . . x1d

x21 x22 . . . x2d

...
xn1 xn2 . . . xnd


Each xi in X is a row vector, i.e., an element of Rd. When the number of features d = 1, the problem is
called simple regression. Otherwise, it is called multiple regression.
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The response variables y ∈ Rn are given by the column vector:

y =


y1
y2
...
yn


The goal is to find a set of weights w ∈ Rd, or parameters, or coefficients (e.g., m and b), so that the
estimates,1 or predictions,2 Xw approximate y:

Xw =


x11 x12 . . . x1d

x21 x22 . . . x2d

...
... . . .

...
xn1 xn2 . . . xnd


w1

...
wd

 =


w1x11 + w2x12 + . . .+ wdx1d

w2x21 + w2x12 + . . .+ wdx1d

...
w1xn1 + w2xn2 + . . .+ wdxnd

 ≈


y1
y2
...
yn

 = y

Observe that Xw = y is a system of n equations with d unknowns. A system of equations can be solved
when it has the same number of equations and unknowns, i.e., when n = d. If n < d, i.e., if the matrix is
wider than it is tall, then the system is underdetermined; it has infinitely many solutions. If n > d, i.e., if
the matrix is taller than it is wide, which is usually the case in regression, the system is overdetermined,
which means it has no solution. Consequently, rather than aim to solve this system of equations exactly, our
goal is to solve for weights that minimize the difference between the predicted values Xw and the observed
values y. As usual, we square the errors, so as to make the ensuing optimization problem smooth.

Define the residual of a candidate solution w as the difference between y and Xw, i.e.,

residual(w) = y −Xw

The least squares objective is to minimize the square of this residual value: loss(w)
.
= residual2(w).

As residual(w) is an n-dimensional column vector, we square it as follows:

loss(w) = residual2(w) = (y −Xw)T (y −Xw) =

n∑
i=1

(y −Xw)2i

In other words, we are interested in minimizing the sum of the squared residuals.

As usual, to minimize an objective, we take its derivative and set it equal to zero.

First, let’s simplify the loss:

loss(w) (1)

= (y −Xw)T (y −Xw) (2)

= yTy − yTXw − (Xw)Ty + (Xw)TXw (3)

= yTy − yTXw −wTXTy +wTXTXw (4)

= yTy − 2wTXTy +wTXTXw (5)

In Equation 3, we rely on the following fact: (AB)T = BTAT . Equation 5 follows from the fact that
(yTXw)T = wTXTy, and that these values are both scalars, so they are equal to their transpose.

1statistical nomenclature
2machine learning nomenclature
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Now let’s take the derivative:

∇wloss(w) (6)

= ∇wyTy − 2∇wwTXTy +∇wwTXTXw (7)

= −2XT y + 2XTXw (8)

Equation 8 relies on the following fact: ∇xx
TAx = 2Ax.

Setting this derivative equal to zero yields a closed-form (i.e., analytical) solution to linear regression:

−2XT y + 2XTXw = 0 (9)

XTXw = XT y (10)

w = (XTX)−1XT︸ ︷︷ ︸
pseudo-inverse

y (11)

The matrix XTX might not be invertible. This matrix is only invertible when the columns of X are linearly
independent, so that they span Rd. The pseudo-inverse (XTX)−1XT , however, always exists, and can be
calculated via a singular value decomposition.

We have established that w satisfies the first-order optimality condition, namely ∇wloss(w) = 0. To
conclude thatw is a minimum, we also need to establish that it satisfies the second-order optimality condition.
For w to be a minimum, the second-order optimality condition requires that ∇2

wf(w) ≥ 0. Indeed,
∇2

wloss(w) = 2XTX ≥ 0.

Alternative Derivation We describe an alternative shorter, geometric, and arguably more intuitive way,
to derive the least-squares estimators. The only way the residual y − Xw can be zero is if y is a linear
combination of the columns of X: i.e., if y lies in the column span of X. As most of the time it does not,
our stated goal of minimizing the value of the residual (squared) can instead be understood as minimizing
the distance from the residual to the column span of X. To minimize this distance, the residual should
be projected onto the column span of X; that is, it should be orthogonal to each column of X: for all
j ∈ {1, . . . , n}, i.e., (y − Xw) · Xj = 0. Equivalently, but expressed more compactly in matrix notation,
(y −Xw)TX = 0. This requirement implies:

XT (y −Xw) = 0 (12)

XTXw = XTy (13)

w = (XTX)−1XTy (14)
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https://en.wikipedia.org/wiki/Singular_value_decomposition

	Ordinary Least-Squares

