*k*NN

and the bias-variance tradeoff

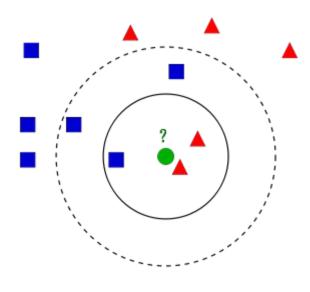


Image Source

iris

3 species (i.e., classes) of iris

- Iris setosa
- Iris versicolor
- Iris virginica

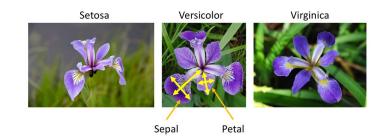


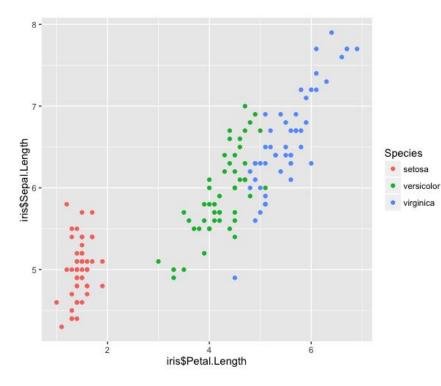
Image Source

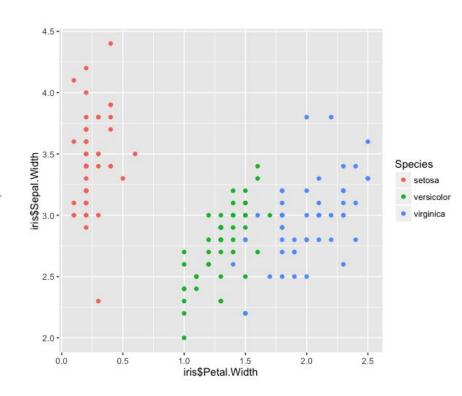
iris

- 50 observations per species
- 4 variables per observation
 - Sepal length
 - Sepal width
 - Petal length
 - Petal width

Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
1	5.1	3.5	1.4	0.2	Iris-setosa
2	4.9	3	1.4	0.2	Iris-setosa
3	4.7	3.2	1.3	0.2	Iris-setosa
4	4.6	3.1	1.5	0.2	Iris-setosa
5	5	3.6	1.4	0.2	Iris-setosa
6	5.4	3.9	1.7	0.4	Iris-setosa
7	4.6	3.4	1.4	0.3	Iris-setosa
8	5	3.4	1.5	0.2	Iris-setosa
9	4.4	2.9	1.4	0.2	Iris-setosa
10	4.9	3.1	1.5	0.1	Iris-setosa

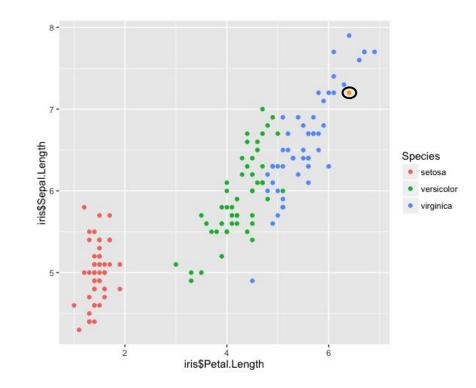
Visualizing the data



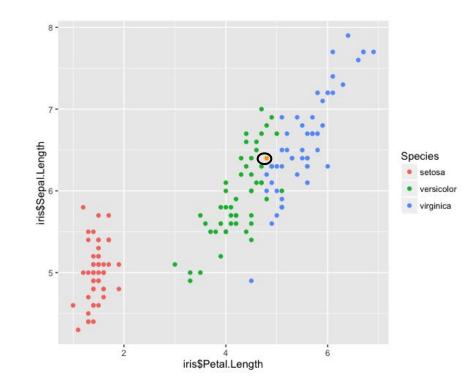


A new observation

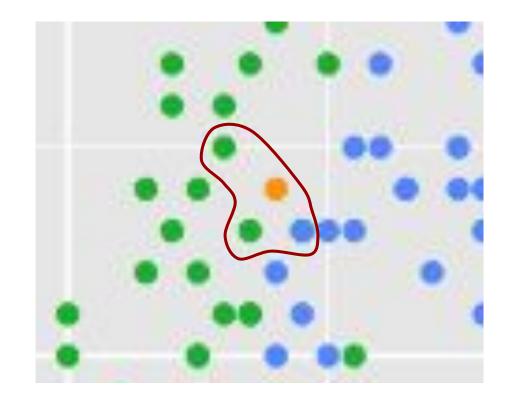
new_point <- data.frame
 (Sepal.Length = 7.2,
 Sepal.Width = 3.2,
 Petal.Length = 6.4,
 Petal.Width = 2.4)</pre>



```
new_point <- data.frame
 (Sepal.Length = 6.4,
   Sepal.Width = 2.8,
   Petal.Length = 4.9,
   Petal.Width = 1.3)</pre>
```

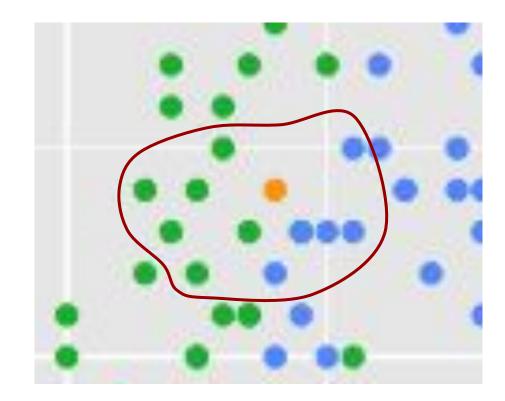


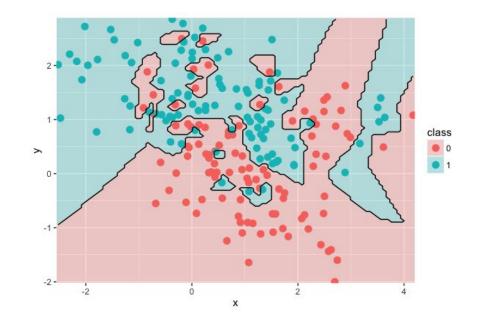
[1] k = 3
[1] versicolor

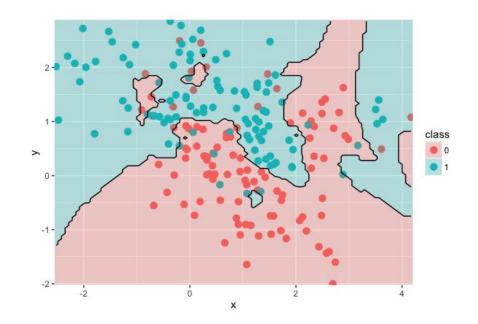


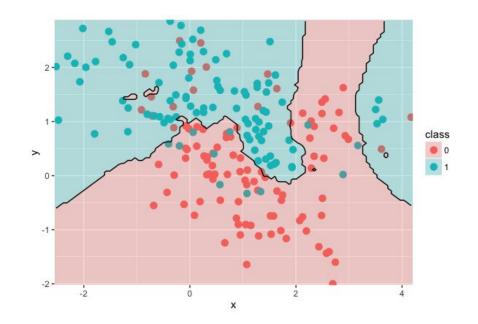
[1] k = 3
[1] versicolor
[1] k = 5
[1] virginica

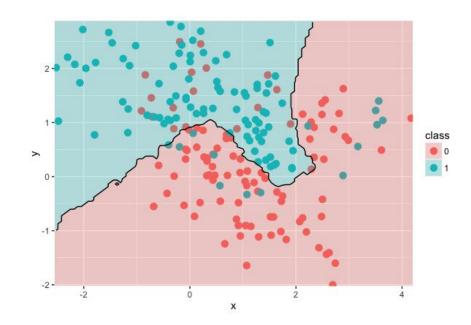
- [1] k = 3
- [1] versicolor
- [1] k = 5
- [1] virginica
- [1] k = 11
- [1] versicolor

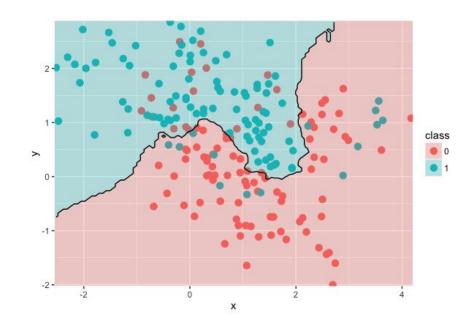


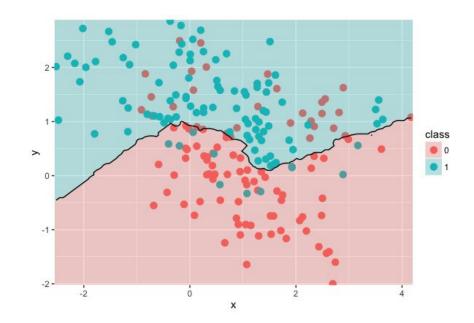


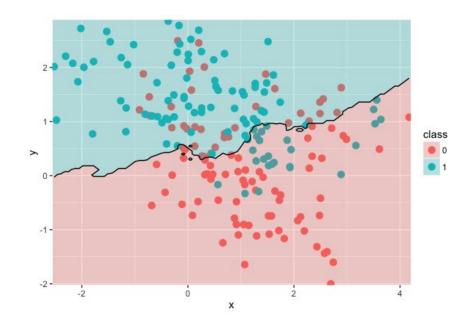






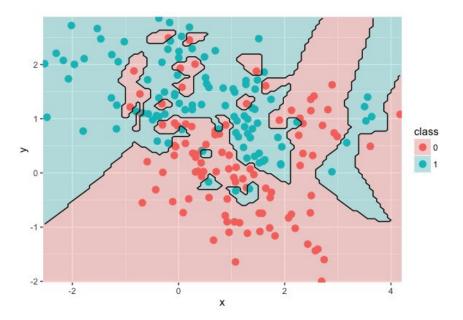






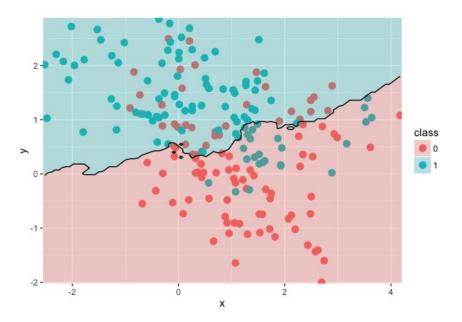
Small k

- *k* = 1
- Low bias
- High variance: model varies greatly with the data
- Models like this are overfit The model reads too much into the data, extrapolating based on things that aren't necessarily relevant



Large k

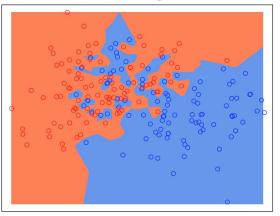
- *k* = 101
- High bias
- Low variance: model barely varies with the data
- Rather than being overfit, this model is underfit
 The decision boundary doesn't capture enough of the relevant information encoded in the data

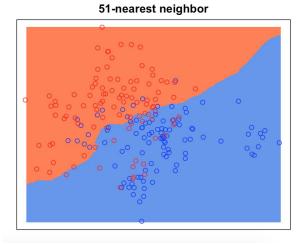


1-nearest neighbor

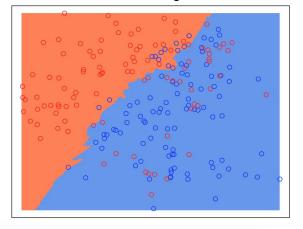


1-nearest neighbor

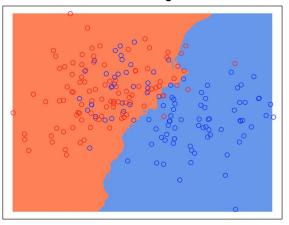




51-nearest neighbor



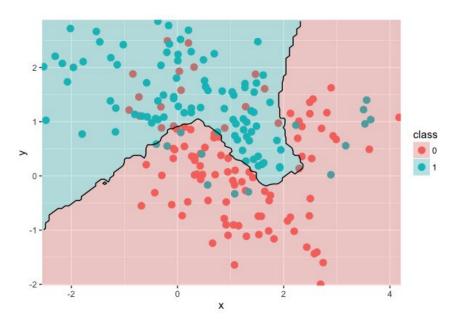
51-nearest neighbor



Model Selection

Find a model that balances the bias-variance tradeoff.

- A high value of *k* correspond to a high degree of bias, but contains the variance
- With low values of *k*, the jagged decision boundaries are a sign of high variance
- k = 15 seems "just right"



Key Design Decisions

- Choose *k*
 - Choose a threshold
- Define "neighbor"
 - Define a measure of distance/closeness (Make sure measurement values are comparable)
- Decide how to classify based on neighbors' labels
 - By a majority vote, or
 - By a weighted majority vote (weighted by distance), or ...

k-NN caveats

- *k*-NN can be very slow, especially for very large data sets
 - *k*-NN is not a learning algorithm in the traditional sense, because it doesn't actually do any learning: i.e., it doesn't preprocess the data
 - Instead, when it is given a new observation, it calculates the distance between that observation and every existing observation in the data set
- *k*-NN works better with quantitative data than categorical data
 - Data must be quantitative to calculate distances
 - So categorical data must be transformed
- Without clusters in the training data, *k*-NN cannot work well

Bias-Variance Tradeoff

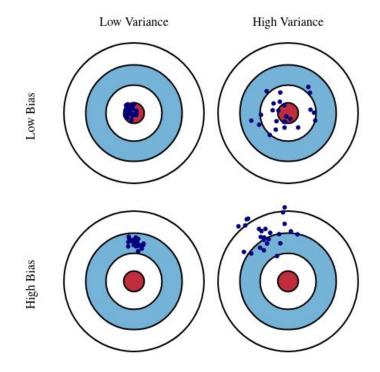


Image Source