
Foundations of AI Fall 2024

Professors Greenwald and Ewing Machine Learning

Statistics for Machine Learning, Continued

1 Bias-Variance Decomposition Theorem

Imagine we wish to estimate a function f : X → Y from data, where the available dataset D is drawn from
a noisy data-generating function as follows: given a data point x ∈ X, y ∈ Y is generated as y ∼ f(x) + ϵ,
where ϵ is a random variable centered at 0. That is, y is a noisy observation of f(x), while f(x) itself is the
true value of the function f at x, also called the ground truth.

Let f̂D(x) denote the estimated, or predicted, value of f(x) at x. We can compute the expected value of the

squared error between our estimate/prediction f̂D(x) and the observed value y as follows:
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Equation 3 follows from the fact that Ey,D
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= 0, as Ey∼f(x)+ϵ [y] = f(x), since

ϵ is centered at 0.

The right-hand term in Equation 3 is sometimes called irreducible error, as it represents error that arises
from the fact that y is generated via a noisy data-generating function. The other term, however, is potentially
reducible error, as it may vary with the choice of estimator f̂D.

Define f̄(x) = ED
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]
. Note that this term is not the expected value of the estimator across datasets.

It is the expected value of the estimated values (i.e., the predictions) across datasets.

Now let’s take a closer look at the reducible error term, which is the expected value of the squared error of
our estimate/prediction f̂D(x) and the ground truth f(x):
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In summary, the expected value of the squared error between f̂D(x) and y is a combination of three terms:
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More specifically, the reducible error is the sum of the variance and the bias squared. The bias-variance
tradeoff is precisely the fact that reducible error can be “allocated” across bias and variance. This allocation
decision is the choice of a high or a low bias model, which impacts the variance accordingly.
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