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1 Probability (Background)

A random variable is a variable whose value depends on the outcome of a random event, called an
experiment. Mathematically, its domain is the sample space—the space of all possible outcomes—while
its co-domain is (typically) the set of real numbers.

An example of an experiment is two fair coin flips, where the outcomes are {HH,HT, TH, TT}. An example
of an associated random variable, call it W , is “the number of heads.” The range of W is {0, 1, 2}. This
random variable is discrete because the sample space is discrete.

A probability distribution is a mathematical function associated with a random variable whose values
are probabilities over subsets of a sample space, called an event. More specifically, these probabilities are
associated with the inverse of W : W−1(0) = {TT}, W−1(1) = {HT, TH}, W−1(2) = {HH}. Since the coin
is fair, P (W = 0) = 1/4, P (W = 1) = 1/2, and P (W = 2) = 1/4. We say that the random variable W is
distributed according to P , and we write W ∼ P .

As the name suggests, random variables vary! Indeed, you may observe different results if you run the same
experiment multiple times. Still, what might you expect the value of a random variable to be? This quantity
is called its expectation. And how might you expect the result of any one experiment to vary from this
expectation. This quantity is called its variance.

The expectation, or expected value, of a discrete random variable with range X = {x1, . . . , xn} and
probabilities P = {p1, . . . , pn} is computed as follows:

EX∼P [X] =
∑
xi∈X

pixi

For example, the E[W ] = 1/4(0)+1/2(1)+1/4(2) = 1. When the probability distribution is clear from context,
we drop the subscript X ∼ P . The expected value of a random variable is also called the mean.

The variance of a random variable is defined as the expected value of the squared difference between the
random variable and its mean: Var[X] = E[(X − E[X])2]. By linearity of expectations—the expected value
of the sum of random variables is equal to the sum of their expectations—this definition simplifies as follows:

Var[X] = E[(X − E[X])2] (1)

= E[(X − E[X])(X − E[X])] (2)

= E[X2 − 2XE[X] + (E[X])2] (3)

= E[X2]− 2E[X]E[X] + (E[X])2 (4)

= E[X2]− (E[X])2 (5)

For example, since (E[W ])2 = 1 and E[W 2] = 1/4(02) + 1/2(12) + 1/4(22) = 3/2, Var[W ] = 1/2.

Exercise Calculate the variance of a single flip of a fair coin, where the random variable of interest is again
the number of heads.
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Solution The expected number of heads in a fair coin flip is 1/2(0)+ 1/2(1) = 1/2. The variance is therefore
1/2(02) + 1/2(12)− (1/2)2 = 1/4.

Two common examples of discrete probability distributions are the Bernoulli distribution and the binomial
distribution. ABernoulli trial is an experiment with exactly two possible outcomes: success/failure, yes/no,
true/false, 1/0, healthy/sick, etc. A Bernoulli random variable is distributed according to a Bernoulli
distribution, where the probability of success is a constant p, and the probability of failure is 1− p.

The expected value of a Bernoulli random variable B is E[B] = p(1) + (1 − p)0 = p. The variance of B is
Var[B] = E[B2]− (E[B])2 = p(12) + (1− p)02 − p2 = p− p2 = p(1− p).

The random variable W summarizes the outcome of not just one, but two experiments. Each experiment
can be described by its own random variable, and importantly, these random variables are independent and
identically distributed (i.i.d.). A collection of random variables is i.i.d. if each is distributed according to the
same probability distribution and each is independent of all the others, meaning the value of one does not
influence the value of another.

A binomial random variable describes the result of n i.i.d. Bernoulli trials. The range of a binomial random
variable is the number of successes. For example, W is a binomial random variable, where n = 2, and heads
corresponds to success so that the range of outcomes is, once again, {0, 1, 2}.

The expected value of a binomial random variable X is the expected value of the n independent Bernoulli
random variables: i.e., E[X] = E[X1 + . . .+Xn] = nE[X1] = np.

Fact The variance of the sum of independent random variables equals the sum of their variances. Hence,
Var[X] = Var[X1 + . . .+Xn] = Var[X1] + . . .+Var[Xn] = nVar[X1] = np(1− p).

When there are more than two possible outcomes, e.g., the roll of a k-sided die, the Bernoulli distribution is
generalized by the categorical distribution, and the binomial, by the multinomial.

2 Supervised Learning, Revisited

In supervised learning, we are given a data set, D = {(xi, yi) | xi ∈ Rd, yi ∈ Rc, i ∈ {1, . . . ,m}}, based on
which we build a machine learning model f intended to predict a value y = f(x) ∈ Rc, given a value x ∈ Rd.
This model may be built heuristically, like a decision tree, or it may be based on a probabilistic model, like
Naive Bayes. The goal, when building such a model, is typically to minimize some loss function. A typical
loss function for a binary classifier is 0-1, or misclassification, loss:

L(y, f(x)) =

{
0 y = f(x)

1 y ̸= f(x)

More precisely, the goal when building a machine learning model is to minimize risk, meaning the expected
loss—computed with respect to some underlying probability distribution from which the data were sampled.
In other words, in supervised learning there always is an underlying assumption that the data set was
generated according to some data-generating process. Moreover, there is a further assumption that the
as-of-yet unseen data to which the model will be applied is drawn from an identical distribution. This
assumption gives us some faith that a machine learning model built from existing data—m samples from
this distribution—can generalize well, meaning perform well on as-of-yet unseen data. Without it, there
would be no reason to believe that a machine learning model would serve any purpose at all.
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One approach to minimizing risk is to minimize empirical risk, which is the risk on the data set D:

m∑
i=1

L(yi, f(xi))

However, minimizing empirical risk does not ensure generalization, because a machine learning model can
overfit the training data. That is, it might memorize idiosyncratic aspects of D, rather than learning general
rules that would work well on as-of-yet unseen data. For this reason, D is often split up into a training set
and a test set; for example, 80% of the data might be allocated to training and the remaining 20%, to
testing. Then various models can be trained on the training set, and evaluated on the test set, as a proxy
for generalization error. This process is called model selection.

The further assumption that the data set D comprises independent samples justifies a further model selection
technique called k-fold cross-validation. This technique involves partitioning the data not jut once, but
k times, into a training set (e.g., 80% of the data) and a test set (e.g., 20% of the data). Each of these
partitions is called a fold. One way to generate k folds might be to shuffle D k times before partitioning.
Using k folds instead of just one is sensible only under the assumption that the data are i.i.d.. Otherwise,
an arbitrary partitioning of D into k folds could obscure regularities in the data.

Model selection can not only to avoid overfitting; it can avoid underfitting as well. A model overfits a data
set if it is too flexible, while it underfits a data set if it is so inflexible that it fails to identify relevant trends.

3 Statistical Modelling

Statistical machine learning methods like Naive Bayes rely on further statistical modelling assumptions,
beyond just i.i.d.. A statistical model is a set of assumptions describing a data-generation process as a
relationship among random variables. Mathematically, a statistical model is a sample space together with a
set, or family, of probability distributions. A parametric model, or a finite-dimensional model, is a
parameterized statistical model with a finite number of parameters.1 Statistical estimation (and statistical
machine learning) is concerned with estimating the parameters of statistical models from samples (i.e., data).

There will be a presidential election next month. Assume some proportion, say p, of voters plans to vote
Democratic, while the remaining proportion, 1 − p, of voters plans to vote Republican. A poll might be
conducted to estimate this proportion, in order to predict the outcome of the election. This poll would
randomly sample a subset of the population about their voting plans. We can model the outcome of this
poll as a binomial random variable, meaning n i.i.d. Bernoulli trials, each with parameter p.2 We can then
use the poll data (i.e., the random samples) to estimate this parameter p.

A statistic is a quantity computed from data. An estimator is a rule for calculating a statistic, which in
this context is called an estimate. Given a data set D = {x1, . . . , xn} comprising the outcome of n Bernoulli
trials (i.e., xi ∈ {0, 1}, for all i ∈ {1, . . . , n}), the sample proportion x̄ = 1/n

∑n
i=1 xi is an example of an

estimate, computed by the sample proportion estimator, a function which takes as input a data set of
0’s and 1s and outputs its sample proportion.

Remark A Bernoulli random variable with parameter p is a parametric model, as it is a statistical model
with one parameter. While model parameters, such as the proportion of Democratic voters, are often
unknown, they are fixed, not random, quantities. Statistics, on the other hand, which depend on random
samples, are random variables.

Next, we explore some of what makes for a good estimator. We do so in the context of the polling example,
where sample proportion is a potential estimate of the success probability p of a binomial random variable.

1Infinite-dimensional statistical models are called non-parametric models.
2Although a mathematical ideal, in practice, no one knows how to sample i.i.d. from a population.

3



4 Maximum Likelihood Estimation

One way of estimating the parameters of a statistical model is via maximum likelihood estimation
(MLE). The idea of this approach is to find a parameter that maximizes the “likelihood” of the given data:
i.e., find θ s.t. LD(θ) is maximized: i.e.,

θ∗ ∈ argmax
θ∈Θ

LD(θ)

Since log is a monotonic function, we can equivalently maximize the log likelihood:

θ∗ ∈ argmax
θ∈Θ

logLD(θ)

By the i.i.d. assumption, the likelihood simplifies as LD(θ) =
∏m

i=1 LDi(θ). For example, the likelihood
function for a binomial random variable simplifies as the product of the likelihood functions of n Bernoullis.
Ultimately, the MLE objective is:

θ∗ ∈ argmax
θ∈Θ

log

m∏
i=1

L(xi,yi)(θ)

∈ argmax
θ∈Θ

m∑
i=1

logL(xi,yi)(θ)

But what, pray tell, is a likelihood function? To define a likelihood function, we assume an underlying
statistical model, i.e., a family Pθ(D) of probability distributions.

In the polling example, the underlying statistical model is a Bernoulli random variable X with parameter
p ∈ [0, 1], i.e., P (X = 1) = p and P (X = 0) = 1−p, which we write as the family of probability distributions:

Pp(X)
.
=

{
p if X = 1

1− p if X = 0

We can rearrange this function as follows:

Pp(X) = pX(1− p)1−X

As above, by case analysis, this reformulation evaluates to p when X = 1, and 1− p when X = 0.

The likelihood function is now essentially the same as this statistical model, except that rather than fixing the
parameter, and making the function dependent on the random variable, instead, the data (e.g., x ∈ {0, 1})
are assumed to be fixed/given, and the parameter is the input to the function: Lx(p) = px(1− p)1−x.

Therefore, assuming x1, . . . , xn are the outcomes of n i.i.d. Bernoulli trials,

logL{xi}n
i=1

(p) = log

n∏
i=1

Lxi
(p)

=

n∑
i=1

logLxi
(p)

=

n∑
i=1

log
{
pxi(1− p)1−xi

}
=

n∑
i=1

(xi log p+ (1− xi) log(1− p))

= nx̄ log p+ n(1− x̄) log(1− p)

4



Here, x̄ = 1/n
∑n

i=1 xi is the sample mean, meaning an average computed from data (i.e., a sample), which
in the case of a binomial random variable is called the sample proportion.

Next, let’s optimize this log likelihood, by taking its derivative and setting it equal to zero.

The derivative is:

∂ logL{xi}n
i=1

(p)

∂p
=

∂ {nx̄ log p+ n(1− x̄) log(1− p)}
∂p

=
nx̄

p
− n(1− x̄)

1− p

Setting this derivative equal to zero yields:

nx̄

p∗
=

n(1− x̄)

1− p∗

Finally, x̄(1− p∗) = p∗(1− x̄), so p∗ = x̄.

As our intuition suggests, the MLE estimator of the parameter p of a binomial random variable is the sample
proportion, i.e., the number of successes divided by the number of trials.
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