
Foundations of AI Fall 2024

Professors Greenwald and Ewing Search Unit

Constraint Satisfaction Problems

Constraint satisfaction problems (CSPs) are problems in which the search is for a feasible solution, meaning
one that satisfies all the constraints. By definition, constraint satisfaction involves “hard” constraints—
constraints that either pass or fail, with no middle ground. Nonetheless, constraint satisfaction problems
are often solved as optimization problems with “soft” constraints. The objective is to maximize the number
of constraints satisfied; or equivalently, to minimize the number of constraints violated. Examples of CSPs
include cryptoarithmetic puzzles and crossword puzzles.

Formally, a (finite) constraint satisfaction problem is a triple ⟨X ,D, C⟩, where

• a finite set of variables X = {x1, . . . , xn}

• a set of finite domains D = {D1, . . . , Dn}

• a finite set of constraints

In finite CSPs, constraints can be expressed either extensionally or intensionally. Given a CSP with two
variables x1 and x2, if D1 = {A,B} and D2 = {B,C}, then the constraint “the value of x1 cannot equal the
value of x2” is expressed extensionally as {(A,B), (A,C), (B,C)} and intensionally as x1 ̸= x2.

An assignment is a mapping from variables to values. A complete assignment assigns a value to all
variables. A consistent assignment does not violate any constraints. A solution to a CSP is a complete
and consistent assignment.

Example A classic example of a CSP is the n-queens problem. In this problem, n-queens are to be placed
on an n × n chess board s.t. no two queens threaten each other: i.e., no two queens occupy the same row,
column, or diagonal. A solution to the 8-queens problem is depicted in Figure 1.

Q
Q

Q
Q

Q
Q

Q
Q

Figure 1: A solution to the 8-queens problem.

In the case of 4-queens, the problem can be represented as follows.

• Variables xr1, xc1, xr2, xc2, xr3, xc3, xr4, xc4, where variable xri represents the ith queen’s row and vari-
able xci represents the ith queen’s column

• Domains: Dr1 = Dc1 = Dr2 = Dc3 = Dr3 = Dc3 = Dr4 = Dc4 = {1, 2, 3, 4}

• Constraints:

1

– No two queens can occupy the same row: i.e.,

∗ xr1 ̸= xr2

∗ xr1 ̸= xr3

∗ xr1 ̸= xr4

∗ xr2 ̸= xr3

∗ xr2 ̸= xr4

∗ xr3 ̸= xr4

– No two queens can occupy the same column: this constraint is formulated in the same way as the
row constraints, but using the column variables.

– No two queens can occupy the same diagonal: i.e.,

∗ |xr1 − xr2| ≠ |xc1 − xc2|
∗ |xr1 − xr3| ≠ |xc1 − xc3|
∗ |xr1 − xr4| ≠ |xc1 − xc4|
∗ |xr2 − xr3| ≠ |xc2 − xc3|
∗ |xr2 − xr4| ≠ |xc2 − xc4|
∗ |xr3 − xr4| ≠ |xc3 − xc4|

The assignment {xr1 7→ 3, xc1 7→ 1, xr2 7→ 1, xc2 7→ 2, xr3 7→ 4, xc3 7→ 3, xr4 7→ 2, xc4 7→ 4} solves the
4-queens problem.

One approach to solving CSPs is via blind search methods that have been extended with general-purpose
heuristics suited to CSPs. We propose a different technique in these notes: reduce an instance of a CSP
to an instance of SAT, and then run a SAT solver in search of a solution to the CSP. We demonstrate this
approach on n-queens.

To start, we define our variables. Note that the variables in the aforementioned formulation of the problem
are integer-valued, not boolean-valued. Therefore, they are not suitable for formulating n-queens as SAT. A
popular alternative is to use a one-hot encoding, which means creating a boolean variable for each possible
integer value. To one-hote encode our integer variables for n-queens, we create boolean variables xij , for all
rows 1 ≤ i ≤ n and columns 1 ≤ j ≤ n, which are assigned the value 1 iff a queen is in the ith column and
the jth row; otherwise, they are assigned the value 0.

Having selected our variables, we now move on to formulating the constraints.

Each row must have exactly one queen. We formulate this constraint as the conjunction of multiple
constraints, namely there must be at least one queen in each row, but there cannot be two (or more) queens
in the same row.

• At least one queen in each row.

For all rows 1 ≤ i ≤ n, (xi,1 ∨ xi,2 . . . ∨ xi,n).

How many such constraints are there? There are n of these constraints, since there are n rows.

• No two queens in the same row. For all rows 1 ≤ i ≤ n and all pairs of distinct columns
1 ≤ j ̸= k ≤ n, (¬xi,j ∨ ¬xi,k).

How many such constraints are there? There are n×n×n− 1 such constraints, since there are n rows
and there are n× n− 1 pairs of distinct columns in each row.

Each column must have exactly one queen. This constraint is analogous to the previous constraint,
but we implement it by iterating over columns instead of rows.

2

• At least one queen in each column

For all columns 1 ≤ j ≤ n, (x1,j ∨ x2,j ∨ . . . ∨ xn,j).

• No two queens in the same column

For all columns 1 ≤ j ≤ n and all pairs of distinct rows 1 ≤ i ̸= k ≤ n, (¬xi,j ∨ ¬xk,j).

Each diagonal must have exactly one queen. To represent this constraint, we consider both the main
diagonals (top-left to bottom-right) and the anti-diagonals (top-right to bottom-left).

Main diagonals For all pairs (i, j) and (k, l) where i− j = k − l and i ̸= k, (¬xi,j ∨ ¬xk,l).

Anti-diagonals For all pairs (i, j) and (k, l) where i+ j = k + l and i ̸= k, (¬xi,j ∨ ¬xk,l).

If we can find an assignment that satisfies the conjunction of all these clauses, then we will have found a
solution to the n-queens problem!

3

