
CSCI 0410/1411 Fall 2024

Final Project Part 3: Go To Town with your Go Agent!

So far, we have provided guidance on the design and development of your agents. Your agents are
competent, but can be significantly improved. Your final task is open-ended and your goal is to create
your own agent to participate in a class-wide tournament with TA bots and your peers’ agents. You have
complete freedom within the guidelines provided. You can use MCTS or not. You can use deep learning or
reinforcement learning to learn policies or construct your own hand-crafted heuristic function. The choice is
yours. We provide some places to start and other potentially useful resources, but these are not required of
your agent.

1 Partners

You can work with one partner for this final submission if you wish. You will submit through only one
person’s Gradescope. If you work with a partner, the intention is that you can experiment and try more
things than working alone. We therefore have higher standards for the report and agent.

2 Submitting your Agent

To construct your final agent, we will call get_final_agent_5x5() or get_final_agent_9x9(). You must
add these methods to your agents.py file and they should construct your final agent when called (or raise
NotImplementedError). We provide the example methods here:

def get_final_agent_5x5():

"""Called to construct agent for final submission for 5x5 board"""

raise NotImplementedError

def get_final_agent_9x9():

"""Called to construct agent for final submission for 9x9 board"""

return GreedyAgent() # construct agent and return it...

We will be running two concurrent sections of the tournament for 5x5 games of Go and 9x9 games of Go.
If your approach works on both board sizes, you should submit both agents. Learning-based approaches will
likely only work for one size. If your approach is specific to one board size, you need only submit one final
agent and leave the other method not implemented.

You will submit your agent and all necessary files to Gradescope just like any other assignment. Grade-
scope will evaluate your agent against a GreedyAgent with a simple heuristic, just to test that your agent
does not time out or otherwise have an error. If your agent successfully defeats the GreedyAgent, then it
will automatically be added to the tournament.

Each day, starting at midnight, a daily tournament will be held among all agents submitted and the
results will be reported on our website. The name of your agent (set by implementing the __str__ method
of your agent) and a unique ID from gradescope will be used to report results.
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https://browncsci410.github.io/ai-website-f24/go_results.html


3 Rules

• Your agent must make moves within the specified time limit. If you are running a loop with
while curr_time - start_time < time_limit, your agent will always run out of time! If you run
out of time for a single move, your agent will forfeit the game and it is an automatic loss. We encourage
you to give a bit of lee-way just to ensure your agent to not lose on time.

• No pondering : Pondering refers to the practice of thinking during your opponents turn. While gener-
ally interesting to think about how you might do this, we want to avoid any nefarious and sabotaging
behavior (spooling up empty work during your opponents turn to starve them of computational re-
sources). Your agent will persist between moves (i.e., you can save information between moves), but
it should not continue processing after get_move ends.

• No catching of support.TimeoutException (or generic exceptions). If your agent takes longer than
the time cutoff, we will terminate it and your agent will forfeit the game. If your agent attempts to
evade this termination (by catching the exception we will interrupt with), you will be disqualified from
the entire tournament.

• Must be written in Python. Search algorithms work better the more states they can explore. Python
is a relatively slow language compared to compiled languages, like C and C++. Yes, your agents would
be more efficient if written in a faster language, but that is not in the spirit of the class. The focus
should be on AI techniques used, not programming language used.

• Your agents will run in docker containers with the same setup as the local environment that you’ve
installed (if you followed the directions). This means that if you install additional libraries locally, they
may not be available remotely for the tournament. If your agent works on Gradescope, it should work
in the tournament as well.

• Your submission to Gradescope should not take more than 50 MB of memory. This means if you use
additional files for neural network parameters or an opening book, they should fall within this 50 MB
limit. We don’t expect people to come close to this limit.

4 Possible Extensions

• Better Heuristic for Iterative Deepening Search: What is currently missing from our non-learned
heuristic values are an idea of which player has captured the most territory. The simple heuristic is
only tracking the number of pieces captured. You can produce a better heuristic by finding regions of
empty cells that are completely surrounded by a single color (or the edge of the board).

• Opening Book: In one sense, the first move of the game is the hardest move for your search algorithms.
The number of available actions and therefore the branching factor of the search tree is the highest on
the first move. In another sense, the first move should be the easiest move of the game. Your agent
should not need to use any computation time on the first move of the game, you should simply hard
code in the best action to take on the first move. But why stop there? There are known popular good
openings for both 5x5 and 9x9 Go. These can be memorized and added in what is called an Opening
Book. For an example of such openings, see this website. To implement this, your agent will need to
check if a state is in your opening book and find the best action (also in the opening book) if it is.
Consider what data structures are required for fast look ups of a given state. Your agent can load
other files into memory, we just ask that you limit your total memory usage to a reasonable amount
(see the rules).

• Transposition Tables: A transposition in Go (and other board games) is a state that can be reached
through multiple move orders. For example, the shown game state shown in Figure 1 may have been
reached in multiple ways. Black could have played their stone at (6, 2) first and the stone at (8, 3)
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https://www.pandanet.co.jp/English/learning_go/learning_go_4.html
https://senseis.xmp.net/?9x9Openings


Figure 1: A board state that can be reached in multiple ways.

second, or vice versa. In your existing search algorithms different move orders result in different states.
However, you can reduce the branching factor of your search tree significantly if you merge together
search nodes that correspond to the same game state. A Transposition Table saves states and their
current evaluations so you can check to see if a state has already been evaluated and you can avoid
any expensive re-computations.

• Saving Information Between Moves: the get_move of your agent will always be called after a single
move by your opponent. You may be able to reuse parts of your old search tree or other data structures
between different moves. Since your agent is an object, you can use instance variables (self.whatever)
to save information in between calls to get_move

• Flexible Time Management: When there is obviously only one good move (e.g., you can immediately
capture a large number of pieces), your agent shouldn’t waste time building a large search tree. Most of
the time spent thinking by top-level professional Go and Chess players is in the middle game. Perhaps
these professionals have the right idea. You may want “flexible” time management that doesn’t take a
constant amount of time for every move. Remember, the time_limit passed to get_move is not how
much time your agent has to take, it is how much time it can take.

• Better selection/playout policies in MCTS: As discussed previously, playouts in MCTS may be more
informative if a simple heuristic is used to guide actions rather than uniform random simulations.
Likewise, other selection methods (or parameters) may be used to improve MCTS performance as well.

• More Supervised Learning: We provided you with an existing dataset for 5x5 games that we collected
using MCTS. You can further improve these methods by using better neural network architectures or
by gathering more data to train on. To collect more data, you can run your own agents against each
other and collect information on states, actions taken, and the results of the games.

• Reinforcement Learning: Similar to supervised learning, the goal will be to learn a heuristic function or
policy for a given state. The advantage of reinforcement learning is that you can potentially collect more
data (through many simulations) than you can with supervised learning alone. Open-spiel provides a

3



gym-like environment (much like the environments we used for blackjack and cartpole), available by
calling:

from open_spiel.python.rl_environment import Environment

env = Environment("go", board_size=5)

If you wish to try Deep-Q learning, there are many tricks that are often used to improve the stability
of the training procedure. Even though neural networks are more expressive than the linear models
we used in our previous fitted-q learning assignment, they can be much harder to train. The library
Stable Baselines provides a helpful list of tips and tricks to get started on selecting an RL algorithm
for your problem.

AlphaGo and AlphaZero both used self-play to train their agents. In self-play, your reinforcement
learning agent would play against itself, slowly improving over time (hopefully). We recommend
you start by playing your reinforcement learning agent against a simple foe, like RandomAgent or
GreedyAgent, to begin with and incrementally increasing the difficulty as training progresses (an
approach called curriculum learning).

• Hybrid Agent: Each of the agents you developed in parts 1 and 2 of the final project have their
strengths and weaknesses. Maybe your learned agents from part 2 play the opening and middle phase
of the game well, but fail towards the end of the game (which is what ours tend to do). Alpha-beta
search is guaranteed to find the best moves available, but in general runs slowly when there are many
available actions. You can combine the strengths of these two agents by using a learned policy in the
beginning of the game and switching to alpha-beta search with a non-learned heuristic at the end of
the game.

5 Additional Resources

• The ChessProgrammingWiki is a community focused on the development of Chess engines. Many of
the techniques used in chess engines are applicable to Go as well. Additionally, they have a page
dedicated to Go. For instance, it has pages dedicated to opening books and transposition tables that
you may find helpful if you choose to implement these features.

• A thesis by Petr Baudis on using MCTS to play Go. Includes practical advice for handling transposi-
tions, selection policies, and playout policies. https://pasky.or.cz/go/prace.pdf

• Alpha Go: provides a description of the methods used to achieve super human Go play for the first
time.

6 Tips and Hints

• “Premature Optimization is the Root of All Evil” – Donald Knuth. Faster implementations will explore
more states and generally perform better. However, beware of trying to optimize your code too soon.
It is better to have a bug-free slow implementation than a fast buggy implementation. If you cannot
understand your own code, you will never be able to get it to run without bugs.

• Version Control (git) is Your Friend: You may find yourself implementing many different versions of
your agent and comparing their performance. You will help yourself if you use helpful commit messages
and commit whenever you have a notable agent worth saving. You will thank yourself if you ever have
to revert to a previous version of your code.
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https://abhishm.github.io/DQN/
https://stable-baselines3.readthedocs.io/en/master/guide/rl_tips.html#reinforcement-learning-tips-and-tricks
https://www.chessprogramming.org/Main_Page
https://www.chessprogramming.org/Go
https://pasky.or.cz/go/prace.pdf
https://www.nature.com/articles/nature24270


• Running experiments and creating figures is not just helpful for understanding results, it can help you
debug your code faster. It can be hard to debug the algorithms you are developing with break points
or print statements alone (as you are probably aware). Making a figure, plot, or other visual
representation can help you debug your implementation and understand whether or not your
algorithm is working as intended.

7 Grading

We are running a tournament where you can track your performance against student and staff agents.
However, we value creativity and ambition above pure performance and will take a holistic approach to
grading. We encourage you to try something that may not work (for example, reinforcement learning) over
something that is guaranteed to work (e.g., MCTS with better time management and other incremental
improvements). You will be evaluated along the following four axes:

• Approach and Creativity: Is your approach incremental or did you try something new and experimen-
tal?

• README: Does your README clearly explain your approach and how you evaluated your approach?
Does it contain any helpful figures to help you understand how your algorithm is working?

• Code Quality: Is your code well written and easy to follow? Is it your own original code?

• Performance: Does your agent perform well against other agents.

You need not check off each of these items to achieve a good score on the final project (the README
is always required). If your README is thorough and helps explain your unique approach, you need not
have an agent with high performance. If your agent performs well and is unique, we will forgive your poorly
written code.

7.1 Final Report

You must include a README with your final submission that describes your agent and what you have done
in this final phase of the final project. If you have known bugs, you should include a description of them
here. If you tried other approaches that are not a part of your final submission, you should include them
here and a brief statement on why you decided not to use them (e.g., they were too slow, buggy, etc.). If
you work with a partner, you must briefly describe what each person contributed to the project.
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