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Final Project Part 2: Supervised Learning for Go

Milestones Release Date Due Date Due Time

Part 1 (Search) 11/15 12/4 5:59 pm ET
Part 2 (Learning) 12/5 12/12 5:59 pm ET
Final Bot & Writeup 12/17 11:59 pm ET
Tournament Ends 12/19 11:59 pm ET

1 Introduction

In Part 1 of the final project, you implemented two tree search algorithms for the game of Go. Several of
these methods (e.g., greedy, αβ-search, and iterative deepening) depended on a heuristic, and thus struggled
to perform well with the naive Go heuristic we provided. In Part 2, you will use supervised learning to learn
a better heuristic, and then hopefully demonstrate improved performance of your heuristic-based agents.

Part 2 of the project comprises three main tasks, followed by experimentation:

1. Build a state representation: i.e., develop a set of features that characterize the states of the game

2. Learn a value function: i.e., learn a function from (encoded) states to values

3. Learn a policy: i.e., learn a function from (encoded) states to actions

4. Experiments with your learned value functions and policies.

2 The Data

Supervised learning is the task of building a function approximator (i.e., a model) from labeled data. We
provide two datasets for you to learn from, in the files 9x9_dataset.pkl and 5x5_dataset.pkl, which, as
their names suggest, correspond to 9 × 9 and 5 × 5 games, respectively. Both datasets comprise a list of
tuples of the form (state, action, outcome).

The 9× 9 dataset is a collection of games played by humans (not AIs) on the Online Go Server (OGS).1

The original collection of games can be found here. The processing code used to translate from the zip file to
OpenSpiel data can be found in data_processing.ipynb, which may be useful to you if you want to learn
from more data or filter out some of the data provided.

The 5× 5 dataset comes from a different source. The 5× 5 version of Go is used to teach people to play
the game, but most people who fancy the game are quick to move on to larger boards. As a result, there are
very few high-level games available to learn from. We therefore provide a dataset of games played by our
MCTSAgent, which outperformed the other agents we built for Part 1 of the project.

1We cannot attest to the quality of these training data, but we suspect that many of the players are stronger than our
MCTSAgent. As a possible extension, you might try to filter this dataset for quality play.
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3 Task 1: Feature Encoding

Recall that supervised learning, or function approximation, is a means of building a model from inputs to
outputs. The inputs are generally described in terms of features, such as the position and velocity of a
cartpole. The Go dataset, however, does not contain features. It contains GameState objects. As a result,
your first task is to write an encoder, meaning a function that converts GameStates into feature vectors.

What makes for a good encoding, or a good choice of features? We contend that an encoding should be
both expressive and informative. An expressive encoding is one that is capable of expressing many, if not
all, of the possible inputs to the model, in our case the GameStates. An informative encoding is encodes
information about the input that is relevant to the task at hand, in our case, playing the game of Go.

An expressive feature encoding for the game of Go should encode the positions of all the stones on the
board. As a first attempt, you might try representing this information using two lists of coordinates, one for
Black and another for White. A difficulty with this approach, however, is these list sizes are variable.2

How can we instead represent all possible Gamestates using features that are constant in size? The board
size is constant, so perhaps we could use one feature per cell—25 features for a 5× 5 board—each of which
can take on one of three possible values. For example, we could represent an empty cell by 0, a cell with a
white stone on it by 1, and a cell with a black stone on it by 2. Encoding categorical variables as continuous
values is not generally a good idea, however, because a model can ascribe meaning to the continuous values
where there is none: e.g., it might surmise that black stones are worth twice as much as white stones.

The preferred way to represent categorical features is to use a one-hot encoding. To build a one-hot
encoding of the aforementioned representation of the positions of the stones on a 5 × 5 Go board, i.e., 25
features, each of which can take on three possible values, we create 25× 3 = 75 binary features. The first 25
are on or off depending on whether the cell is empty or not; the next 25 are on or off depending on whether
the cell is occupied by a white stone or not; and the final 25 are on or off depending on whether the cell
is occupied by a black stone or not. Note that there is redundancy in this feature representation: if a cell
is occupied, it is not empty, and vice versa. Indeed, the 50 features indicative of the black or white stones’
positions are alone sufficient to represent all the possible positions of the stones on a 5× 5 Go board.

One additional feature is necessary to fully capture GameState, namely the player-to-move. These 51
binary features are sufficient to represent all the GameStates in 5 × 5 Go. In other words, this encoding is
fully expressive. But expressivity alone is not enough; your encoding must also be informative! If you do
not also encode enough relevant information about your inputs in your features, then no matter big your
dataset is, and how fancy your neural network is, it will never be able to learn effectively. In the case of
games (and single-agent sequential decision making), an informative feature set encodes information about
the state that facilitates choosing good actions (or making good decisions).

Not Expressive Expressive

Not Informative -

A single integer feature
between 0 and 251,

where each game state is
mapped to a unique value

Informative
Number of pieces

per player
Your Goal

Feature engineering/encoding is an often overlooked aspect of machine learning, but it can be key to
the practical success of models. The neural network built for AlphaGo used 17 features per grid cell on a
19× 19 board for a grand total of 6137 features! You do not need to use anywhere near that many features
in this project, but you should dream up a few informative features, and then use them together with the
expressive encoding we described above to improve your models.

2There are techniques to handle variable input sizes. Large Language Models, for instance, handle different context sizes
(i.e., number of words in the prompts).
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Task Write get_features, which encodes GameStates as feature vectors. Test its correctness on a few
sample inputs and outputs.

Note You cannot evaluate the efficacy of your encoding until you train a model to fit your dataset (Tasks
2 and 3) and build agents based on these models (Task 4).

4 Task 2: Learning a Value Function

Adversarial games like Go are sequential decision problems, albeit for two players. By fixing the strategy
of the opponent (e.g., the dealer in Blackjack), these games can be conceptualized as (single-agent) MDPs.
When a zero-sum game with rewards +1 and −1 is viewed as an MDP, the value of a state—by definition,
the expected sum of future rewards—is indicative of how likely the agent is to win or lose the game from
that state. Learning a value function can therefore be framed as a binary classification problem, where the
goal is to classify each state as a future win for one player or the other, or more generally, to generate a
prediction in the range [−1,+1] that is indicative of which player will win the game.

Task Your task is to implement a neural network that represents a value function and to train it using the
data provided to predict the outcome of a game given a(n encoded) state. Be sure that your training and
test error decrease as your model learns.

Note You cannot evaluate the effectiveness of your learned value function until you build agents based on
it (Task 4).

Tip #1 Pytorch provides a number of built in loss functions. We covered some of these in class (e.g.,
mean squared error, log-loss/cross entropy). Which one is applicable to predicting the outcome of a game?

Tip #2 In previous assignments, you implemented gradient descent from scratch (i.e., computing θ−α∇θf
explicitly). Pytorch provides a powerful set of optimizers that implement variations of stochastic gradient
descent (SGD). In the stencil code, we provide an example of how to use one these optimizers, namely
Adam. Adam (ADAptive Momentum) is a variation of SGD that uses momentum to try to escape local
minima quickly. We provide you with an outline of the training loop, but leave it to you to fill in the details.

5 Task 3: Learning a Policy

Your third task is to learn a policy, rather than a value function. In a sense, learning a policy is very similar
to learning a value function. The primary difference is that it is a multiclass classification problem (i.e., to
learn an action to take), instead of a binary one.

There are two basic approaches to multiclass classification. In the first, the goal is simply to predict
the class directly (e.g., an integer between 1 and 26 in a 5 × 5 game of Go). In the second, you predict a
probability distribution over classes, which you compare to a one-hot encoding of the true class.

The loss functions that correspond to these two approaches are called sparse categorical cross-entropy
loss and categorical cross-entropy loss, respectively.

Task Your task is to implement a neural network that represents a policy and to train it using the data
provided to choose an action given a(n encoded) state. Be sure that your training and test error decrease as
your model learns.

Note You cannot evaluate the efficacy of your learned policy until you build agents based on it (Task 4).
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6 Task 4: Let’s Play!

Your next task is to incorporate your supervised learning models into a Go-playing agent. There are myriad
ways to accomplish this task.3 For now, we ask that you build two agents:

• The first should use your learned value function from Part 2 of the project in your heuristic-based
search agents from Part 1, in place of the naive heuristic we provided in Part 1.

• The second should simply play according to your learned policy.

Support Code We have provided the GoProblemLearnedHeuristic class with a heuristic method as
an alternative to GoProblemSimpleHeuristic from Part 1, which can be used by the heuristic search agents
you built in Part 1.

Experiments Your final task is to design and run experiments with these agents. Among other things, you
should hopefully be able to show that (at least some of) your Part 2 agents outperform your Part 1 agents.
Summarize your experimental design in a table in your README, an explain your results, using figures or
tables as necessary. For example, you might create a matrix with agent names as rows and columns, and
agent scores in the cells.

7 Extensions

There are many possible ways to improve your supervised learning models, and to better use these models
in your agents. Here are two simple examples.

• Learned models should lead to relatively strong opening moves, compared to, say, minimax, but can
perform worse than minimax in end games, when there are only a few possible moves remaining and
the search tree is relatively small. Your agent need not employ only one strategy; rather, it can use
different search methods in different parts of the game.

• We provided you with a training dataset of 2,000 games of 5× 5 Go. Rotating any of these games by
90, 180, or 270 degrees would still be a valid game of Go, but most likely one that is not in the dataset.
This process is a means of augmenting the given dataset (data augmentation), by modifying data
to produce additional data, without incurring the cost of running new games.

Consider enhancing your agents with one of these two techniques, or any others of your own conception, and
updating your experiments accordingly.

8 Downloads

You can access the support and stencil code for this assignment through Github Classroom.

9 A Hint about Part 3

For Part 3 of the final project, we will encourage you to use all the tools in your AI toolkit to try to build
even better Go agents. We hope you have fun!

3The AlphaGo algorithm itself is perhaps the most well-known among them. In Part 3 of the final project, which is open
ended, you may choose to implement AlphaGo.
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